These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 22652087)

  • 1. Acceleration of cellulose degradation and shift of product via methanogenic co-culture of a cellulolytic bacterium with a hydrogenotrophic methanogen.
    Sasaki D; Morita M; Sasaki K; Watanabe A; Ohmura N
    J Biosci Bioeng; 2012 Oct; 114(4):435-9. PubMed ID: 22652087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Syntrophic degradation of proteinaceous materials by the thermophilic strains Coprothermobacter proteolyticus and Methanothermobacter thermautotrophicus.
    Sasaki K; Morita M; Sasaki D; Nagaoka J; Matsumoto N; Ohmura N; Shinozaki H
    J Biosci Bioeng; 2011 Nov; 112(5):469-72. PubMed ID: 21802987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased growth of a hydrogenotrophic methanogen in co-culture with a cellulolytic bacterium under cathodic electrochemical regulation.
    Sasaki D; Morita M; Sasaki K; Watanabe A; Ohmura N
    Biosci Biotechnol Biochem; 2013; 77(5):1096-9. PubMed ID: 23649235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavior of cellulose-degrading bacteria in thermophilic anaerobic digestion process.
    Syutsubo K; Nagaya Y; Sakai S; Miya A
    Water Sci Technol; 2005; 52(1-2):79-84. PubMed ID: 16180412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester.
    Hori T; Haruta S; Ueno Y; Ishii M; Igarashi Y
    Appl Environ Microbiol; 2006 Feb; 72(2):1623-30. PubMed ID: 16461718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioelectrochemical regulation accelerates facultatively syntrophic proteolysis.
    Sasaki D; Sasaki K; Morita M; Hirano S; Matsumoto N; Ohmura N
    J Biosci Bioeng; 2012 Jul; 114(1):59-63. PubMed ID: 22421636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of pH on ex-situ biomethanation with hydrogenotrophic methanogens under thermophilic and extreme-thermophilic conditions.
    Chen L; Du S; Xie L
    J Biosci Bioeng; 2021 Feb; 131(2):168-175. PubMed ID: 33199191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate-oxidizing bacteria.
    Wang H; Fotidis IA; Angelidaki I
    FEMS Microbiol Ecol; 2015 Nov; 91(11):. PubMed ID: 26490748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring.
    Singh N; Mathur AS; Tuli DK; Gupta RP; Barrow CJ; Puri M
    Biotechnol Biofuels; 2017; 10():73. PubMed ID: 28344648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cysteine-Accelerated Methanogenic Propionate Degradation in Paddy Soil Enrichment.
    Zhuang L; Ma J; Tang J; Tang Z; Zhou S
    Microb Ecol; 2017 May; 73(4):916-924. PubMed ID: 27815590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological and genetic basis for self-aggregation of a thermophilic hydrogenotrophic methanogen, Methanothermobacter strain CaT2.
    Kosaka T; Toh H; Fujiyama A; Sakaki Y; Watanabe K; Meng XY; Hanada S; Toyoda A
    Environ Microbiol Rep; 2014 Jun; 6(3):268-77. PubMed ID: 24983531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative proteomic analysis of Methanothermobacter themautotrophicus ΔH in pure culture and in co-culture with a butyrate-oxidizing bacterium.
    Enoki M; Shinzato N; Sato H; Nakamura K; Kamagata Y
    PLoS One; 2011; 6(8):e24309. PubMed ID: 21904627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Bioconversion of cellulose to methane by a consortium consisting of four microbial strains].
    Wu JM; Ma AZ; Cui MM; Yu Q; Qi HY; Zhuang XL; Zhuang GQ
    Huan Jing Ke Xue; 2014 Jan; 35(1):327-33. PubMed ID: 24720223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enrichment and detection of microorganisms involved in direct and indirect methanogenesis from methanol in an anaerobic thermophilic bioreactor.
    Roest K; Altinbas M; Paulo PL; Heilig HG; Akkermans AD; Smidt H; de Vos WM; Stams AJ
    Microb Ecol; 2005 Oct; 50(3):440-6. PubMed ID: 16328652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus.
    Ishii S; Kosaka T; Hori K; Hotta Y; Watanabe K
    Appl Environ Microbiol; 2005 Dec; 71(12):7838-45. PubMed ID: 16332758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential expression of methanogenesis genes of Methanothermobacter thermoautotrophicus (formerly Methanobacterium thermoautotrophicum) in pure culture and in cocultures with fatty acid-oxidizing syntrophs.
    Luo HW; Zhang H; Suzuki T; Hattori S; Kamagata Y
    Appl Environ Microbiol; 2002 Mar; 68(3):1173-9. PubMed ID: 11872465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic biodegradation of cellulosic material: batch experiments and modelling based on isotopic data and focusing on aceticlastic and non-aceticlastic methanogenesis.
    Qu X; Vavilin VA; Mazéas L; Lemunier M; Duquennoi C; He PJ; Bouchez T
    Waste Manag; 2009 Jun; 29(6):1828-37. PubMed ID: 19157832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Illumination enhances methane production from thermophilic anaerobic digestion.
    Tada C; Tsukahara K; Sawayama S
    Appl Microbiol Biotechnol; 2006 Jul; 71(3):363-8. PubMed ID: 16195794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-Feedings, Competition, and Positive and Negative Synergies in a Four-Species Synthetic Community for Anaerobic Degradation of Cellulose to Methane.
    Wang D; Hunt KA; Candry P; Tao X; Wofford NQ; Zhou J; McInerney MJ; Stahl DA; Tanner RS; Zhou A; Winkler M; Pan C
    mBio; 2023 Apr; 14(2):e0318922. PubMed ID: 36847519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of a methanogen, Methanobrevibacter smithii, on the growth rate, organic acid production, and specific ATP activity of three predominant ruminal cellulolytic bacteria.
    Rychlik JL; May T
    Curr Microbiol; 2000 Mar; 40(3):176-80. PubMed ID: 10679049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.