These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 22652128)

  • 1. Transcriptional responses toward diffusible signals from symbiotic microbes reveal MtNFP- and MtDMI3-dependent reprogramming of host gene expression by arbuscular mycorrhizal fungal lipochitooligosaccharides.
    Czaja LF; Hogekamp C; Lamm P; Maillet F; Martinez EA; Samain E; Dénarié J; Küster H; Hohnjec N
    Plant Physiol; 2012 Aug; 159(4):1671-85. PubMed ID: 22652128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pre-announcement of symbiotic guests: transcriptional reprogramming by mycorrhizal lipochitooligosaccharides shows a strict co-dependency on the GRAS transcription factors NSP1 and RAM1.
    Hohnjec N; Czaja-Hasse LF; Hogekamp C; Küster H
    BMC Genomics; 2015 Nov; 16():994. PubMed ID: 26597293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc-LCOs in Medicago truncatula.
    Camps C; Jardinaud MF; Rengel D; Carrère S; Hervé C; Debellé F; Gamas P; Bensmihen S; Gough C
    New Phytol; 2015 Oct; 208(1):224-40. PubMed ID: 25919491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice.
    Sun J; Miller JB; Granqvist E; Wiley-Kalil A; Gobbato E; Maillet F; Cottaz S; Samain E; Venkateshwaran M; Fort S; Morris RJ; Ané JM; Dénarié J; Oldroyd GE
    Plant Cell; 2015 Mar; 27(3):823-38. PubMed ID: 25724637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NSP1 is a component of the Myc signaling pathway.
    Delaux PM; Bécard G; Combier JP
    New Phytol; 2013 Jul; 199(1):59-65. PubMed ID: 23663036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula.
    Feng F; Sun J; Radhakrishnan GV; Lee T; Bozsóki Z; Fort S; Gavrin A; Gysel K; Thygesen MB; Andersen KR; Radutoiu S; Stougaard J; Oldroyd GED
    Nat Commun; 2019 Nov; 10(1):5047. PubMed ID: 31695035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Sequencing of the Medicago truncatula Root Transcriptome Reveals a Massive and Early Interaction between Nodulation Factor and Ethylene Signals.
    Larrainzar E; Riely BK; Kim SC; Carrasquilla-Garcia N; Yu HJ; Hwang HJ; Oh M; Kim GB; Surendrarao AK; Chasman D; Siahpirani AF; Penmetsa RV; Lee GS; Kim N; Roy S; Mun JH; Cook DR
    Plant Physiol; 2015 Sep; 169(1):233-65. PubMed ID: 26175514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mycorrhizal lipochitinoligosaccharides (LCOs) depolarize root hairs of Medicago truncatula.
    Hürter AL; Fort S; Cottaz S; Hedrich R; Geiger D; Roelfsema MRG
    PLoS One; 2018; 13(5):e0198126. PubMed ID: 29851976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhizobium Lipo-chitooligosaccharide Signaling Triggers Accumulation of Cytokinins in Medicago truncatula Roots.
    van Zeijl A; Op den Camp RH; Deinum EE; Charnikhova T; Franssen H; Op den Camp HJ; Bouwmeester H; Kohlen W; Bisseling T; Geurts R
    Mol Plant; 2015 Aug; 8(8):1213-26. PubMed ID: 25804975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The microRNA miR171h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2.
    Lauressergues D; Delaux PM; Formey D; Lelandais-Brière C; Fort S; Cottaz S; Bécard G; Niebel A; Roux C; Combier JP
    Plant J; 2012 Nov; 72(3):512-22. PubMed ID: 22775306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway.
    Oláh B; Brière C; Bécard G; Dénarié J; Gough C
    Plant J; 2005 Oct; 44(2):195-207. PubMed ID: 16212600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell autonomous and non-cell autonomous control of rhizobial and mycorrhizal infection in Medicago truncatula.
    Rival P; Bono JJ; Gough C; Bensmihen S; Rosenberg C
    Plant Signal Behav; 2013 Feb; 8(2):e22999. PubMed ID: 23221781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone.
    Genre A; Chabaud M; Balzergue C; Puech-Pagès V; Novero M; Rey T; Fournier J; Rochange S; Bécard G; Bonfante P; Barker DG
    New Phytol; 2013 Apr; 198(1):190-202. PubMed ID: 23384011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula.
    Kosuta S; Chabaud M; Lougnon G; Gough C; Dénarié J; Barker DG; Bécard G
    Plant Physiol; 2003 Mar; 131(3):952-62. PubMed ID: 12644648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The DMI1 and DMI2 early symbiotic genes of medicago truncatula are required for a high-affinity nodulation factor-binding site associated to a particulate fraction of roots.
    Hogg BV; Cullimore JV; Ranjeva R; Bono JJ
    Plant Physiol; 2006 Jan; 140(1):365-73. PubMed ID: 16377749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of Lipochitooligosaccharide Binding to a LysM-RLK for Nodulation in Medicago truncatula.
    Cullimore J; Fliegmann J; Gasciolli V; Gibelin-Viala C; Carles N; Luu TB; Girardin A; Cumener M; Maillet F; Pradeau S; Fort S; Bono JJ; Gough C; Lefebvre B
    Plant Cell Physiol; 2023 Jul; 64(7):746-757. PubMed ID: 37098213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-box transcription factor gene expression correlating with fungal contact and spread.
    Hogekamp C; Arndt D; Pereira PA; Becker JD; Hohnjec N; Küster H
    Plant Physiol; 2011 Dec; 157(4):2023-43. PubMed ID: 22034628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Through the doors of perception to function in arbuscular mycorrhizal symbioses.
    Bucher M; Hause B; Krajinski F; Küster H
    New Phytol; 2014 Dec; 204(4):833-40. PubMed ID: 25414918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The LysM Receptor-Like Kinase SlLYK10 Controls Lipochitooligosaccharide Signaling in Inner Cell Layers of Tomato Roots.
    Ding Y; Wang T; Gasciolli V; Reyt G; Remblière C; Marcel F; François T; Bendahmane A; He G; Bono JJ; Lefebvre B
    Plant Cell Physiol; 2024 Jul; 65(7):1149-1159. PubMed ID: 38581668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rice calcium-dependent protein kinase is expressed in cortical root cells during the presymbiotic phase of the arbuscular mycorrhizal symbiosis.
    Campos-Soriano L; Gómez-Ariza J; Bonfante P; San Segundo B
    BMC Plant Biol; 2011 May; 11():90. PubMed ID: 21595879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.