These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22652227)

  • 1. Visualizing evolution in real time to determine the molecular mechanisms of n-butanol tolerance in Escherichia coli.
    Reyes LH; Almario MP; Winkler J; Orozco MM; Kao KC
    Metab Eng; 2012 Sep; 14(5):579-90. PubMed ID: 22652227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic determinants for n-butanol tolerance in evolved Escherichia coli mutants: cross adaptation and antagonistic pleiotropy between n-butanol and other stressors.
    Reyes LH; Abdelaal AS; Kao KC
    Appl Environ Microbiol; 2013 Sep; 79(17):5313-20. PubMed ID: 23811509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli.
    Reyes LH; Almario MP; Kao KC
    PLoS One; 2011 Mar; 6(3):e17678. PubMed ID: 21408113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global Functional Analysis of Butanol-Sensitive
    Jeong H; Lee SW; Kim SH; Kim EY; Kim S; Yoon SH
    J Microbiol Biotechnol; 2017 Jun; 27(6):1171-1179. PubMed ID: 28335589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive laboratory evolution for strain engineering.
    Winkler J; Reyes LH; Kao KC
    Methods Mol Biol; 2013; 985():211-22. PubMed ID: 23417806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved n-butanol tolerance in Escherichia coli by controlling membrane related functions.
    Bui le M; Lee JY; Geraldi A; Rahman Z; Lee JH; Kim SC
    J Biotechnol; 2015 Jun; 204():33-44. PubMed ID: 25858152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of functional butanol-tolerant genes from
    He X; Xue T; Ma Y; Zhang J; Wang Z; Hong J; Hui L; Qiao J; Song H; Zhang M
    Biotechnol Biofuels; 2019; 12():73. PubMed ID: 30976323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualizing evolution in real-time method for strain engineering.
    Reyes LH; Winkler J; Kao KC
    Front Microbiol; 2012; 3():198. PubMed ID: 22661973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering stress tolerance of Escherichia coli by stress-induced mutagenesis (SIM)-based adaptive evolution.
    Zhu L; Cai Z; Zhang Y; Li Y
    Biotechnol J; 2014 Jan; 9(1):120-7. PubMed ID: 24106039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a stress-induced mutagenesis module for autonomous adaptive evolution of Escherichia coli to improve its stress tolerance.
    Zhu L; Li Y; Cai Z
    Biotechnol Biofuels; 2015; 8():93. PubMed ID: 26136829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli.
    Atsumi S; Wu TY; Machado IM; Huang WC; Chen PY; Pellegrini M; Liao JC
    Mol Syst Biol; 2010 Dec; 6():449. PubMed ID: 21179021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance.
    Zhang H; Chong H; Ching CB; Song H; Jiang R
    Appl Microbiol Biotechnol; 2012 May; 94(4):1107-17. PubMed ID: 22466954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing tolerance to short-chain alcohols by engineering the Escherichia coli AcrB efflux pump to secrete the non-native substrate n-butanol.
    Fisher MA; Boyarskiy S; Yamada MR; Kong N; Bauer S; Tullman-Ercek D
    ACS Synth Biol; 2014 Jan; 3(1):30-40. PubMed ID: 23991711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of butanol production by sequential introduction of mutations conferring butanol tolerance and streptomycin resistance.
    Tanaka Y; Kasahara K; Hirose Y; Morimoto Y; Izawa M; Ochi K
    J Biosci Bioeng; 2017 Oct; 124(4):400-407. PubMed ID: 28566234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass.
    Almario MP; Reyes LH; Kao KC
    Biotechnol Bioeng; 2013 Oct; 110(10):2616-23. PubMed ID: 23613173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary engineering of E. coli MG1655 for tolerance against isoprenol.
    Babel H; Krömer JO
    Biotechnol Biofuels; 2020 Nov; 13(1):183. PubMed ID: 33292484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of isopropanol tolerance of Escherichia coli using adaptive laboratory evolution and omics technologies.
    Horinouchi T; Sakai A; Kotani H; Tanabe K; Furusawa C
    J Biotechnol; 2017 Aug; 255():47-56. PubMed ID: 28645581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of organic solvent tolerance by disruption of the lon gene in Escherichia coli.
    Watanabe R; Doukyu N
    J Biosci Bioeng; 2014 Aug; 118(2):139-44. PubMed ID: 24571965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of butanol-tolerant Staphylococcus aureus.
    Zhang J; Huang S; Ma Y; Zhang M; Zou S
    Biotechnol Lett; 2016 Nov; 38(11):1929-1934. PubMed ID: 27480972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased Microbial Butanol Tolerance by Exogenous Membrane Insertion Molecules.
    Hinks J; Wang Y; Matysik A; Kraut R; Kjelleberg S; Mu Y; Bazan GC; Wuertz S; Seviour T
    ChemSusChem; 2015 Nov; 8(21):3718-26. PubMed ID: 26404512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.