BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 22652489)

  • 1. Proteomic study of β-aminobutyric acid-mediated cadmium stress alleviation in soybean.
    Hossain Z; Makino T; Komatsu S
    J Proteomics; 2012 Jul; 75(13):4151-64. PubMed ID: 22652489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.).
    Shaw AK; Bhardwaj PK; Ghosh S; Roy S; Saha S; Sherpa AR; Saha SK; Hossain Z
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2437-53. PubMed ID: 26416125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative proteomic analysis of β-aminobutyric acid-mediated alleviation of salt stress in barley.
    Mostek A; Börner A; Weidner S
    Plant Physiol Biochem; 2016 Feb; 99():150-61. PubMed ID: 26760953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological and proteomic analysis of selenium-mediated tolerance to Cd stress in cucumber (Cucumis sativus L.).
    Sun H; Dai H; Wang X; Wang G
    Ecotoxicol Environ Saf; 2016 Nov; 133():114-26. PubMed ID: 27434422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The proteome response of potato leaves to priming agents and S-nitrosoglutathione.
    Arasimowicz-Jelonek M; Kosmala A; Janus Ł; Abramowski D; Floryszak-Wieczorek J
    Plant Sci; 2013 Jan; 198():83-90. PubMed ID: 23199689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The priming molecule β-aminobutyric acid is naturally present in plants and is induced by stress.
    Thevenet D; Pastor V; Baccelli I; Balmer A; Vallat A; Neier R; Glauser G; Mauch-Mani B
    New Phytol; 2017 Jan; 213(2):552-559. PubMed ID: 27782340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil drench treatment with ß-aminobutyric acid increases drought tolerance of potato.
    Sós-Hegedűs A; Juhász Z; Poór P; Kondrák M; Antal F; Tari I; Mauch-Mani B; Bánfalvi Z
    PLoS One; 2014; 9(12):e114297. PubMed ID: 25489951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of proteome alterations induced by cadmium stress in sunflower (Helianthus annuus L.) cultures.
    Lopes Júnior CA; Barbosa Hde S; Moretto Galazzi R; Ferreira Koolen HH; Gozzo FC; Arruda MA
    Ecotoxicol Environ Saf; 2015 Sep; 119():170-7. PubMed ID: 26004357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cadmium induces two waves of reactive oxygen species in Glycine max (L.) roots.
    Pérez-Chaca MV; Rodríguez-Serrano M; Molina AS; Pedranzani HE; Zirulnik F; Sandalio LM; Romero-Puertas MC
    Plant Cell Environ; 2014 Jul; 37(7):1672-87. PubMed ID: 24433233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Differential expression of proteins in Oryza sativa leaves in response to cadmium stress].
    Xiao QT; Rong H; Zhou LY; Liu J; Lin WX; Lin RY
    Ying Yong Sheng Tai Xue Bao; 2011 Apr; 22(4):1013-9. PubMed ID: 21774326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants.
    Schneider T; Schellenberg M; Meyer S; Keller F; Gehrig P; Riedel K; Lee Y; Eberl L; Martinoia E
    Proteomics; 2009 May; 9(10):2668-77. PubMed ID: 19391183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative proteome analysis of high and low cadmium accumulating soybeans under cadmium stress.
    Hossain Z; Hajika M; Komatsu S
    Amino Acids; 2012 Dec; 43(6):2393-416. PubMed ID: 22588482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term cadmium exposure influences the abundance of proteins that impact the cell wall structure in Medicago sativa stems.
    Gutsch A; Keunen E; Guerriero G; Renaut J; Cuypers A; Hausman JF; Sergeant K
    Plant Biol (Stuttg); 2018 Nov; 20(6):1023-1035. PubMed ID: 29908008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seed priming with BABA (β-amino butyric acid): a cost-effective method of abiotic stress tolerance in Vigna radiata (L.) Wilczek.
    Jisha KC; Puthur JT
    Protoplasma; 2016 Mar; 253(2):277-89. PubMed ID: 25837010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of silicon influence on the mitigation of cadmium-stress in the development of Arabidopsis thaliana through total metal content, proteomic and enzymatic approaches.
    Carneiro JMT; Chacón-Madrid K; Galazzi RM; Campos BK; Arruda SCC; Azevedo RA; Arruda MAZ
    J Trace Elem Med Biol; 2017 Dec; 44():50-58. PubMed ID: 28965600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated physiological and proteomic analysis reveals underlying response and defense mechanisms of Brachypodium distachyon seedling leaves under osmotic stress, cadmium and their combined stresses.
    Cheng ZW; Chen ZY; Yan X; Bian YW; Deng X; Yan YM
    J Proteomics; 2018 Jan; 170():1-13. PubMed ID: 28986270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. β-Aminobutyric Acid Priming Acquisition and Defense Response of Mango Fruit to
    Li T; Fan P; Yun Z; Jiang G; Zhang Z; Jiang Y
    Cells; 2019 Sep; 8(9):. PubMed ID: 31487826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative proteomic and physiological analyses reveal the protective effect of exogenous calcium on the germinating soybean response to salt stress.
    Yin Y; Yang R; Han Y; Gu Z
    J Proteomics; 2015 Jan; 113():110-26. PubMed ID: 25284050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organ-specific proteomic analysis of drought-stressed soybean seedlings.
    Mohammadi PP; Moieni A; Hiraga S; Komatsu S
    J Proteomics; 2012 Mar; 75(6):1906-23. PubMed ID: 22245419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems.
    Hasanuzzaman M; Hossain MA; Fujita M
    Biol Trace Elem Res; 2012 Nov; 149(2):248-61. PubMed ID: 22535598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.