These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 22652508)
1. Facile and rapid synthesis of spherical porous palladium nanostructures with high catalytic activity for formic acid electro-oxidation. Tang S; Vongehr S; Zheng Z; Ren H; Meng X Nanotechnology; 2012 Jun; 23(25):255606. PubMed ID: 22652508 [TBL] [Abstract][Full Text] [Related]
2. Graphene nanosheets-polypyrrole hybrid material as a highly active catalyst support for formic acid electro-oxidation. Yang S; Shen C; Liang Y; Tong H; He W; Shi X; Zhang X; Gao HJ Nanoscale; 2011 Aug; 3(8):3277-84. PubMed ID: 21713273 [TBL] [Abstract][Full Text] [Related]
3. Controlled synthesis of nanosized palladium icosahedra and their catalytic activity towards formic-acid oxidation. Lv T; Wang Y; Choi SI; Chi M; Tao J; Pan L; Huang CZ; Zhu Y; Xia Y ChemSusChem; 2013 Oct; 6(10):1923-30. PubMed ID: 24106017 [TBL] [Abstract][Full Text] [Related]
4. Formic acid-assisted synthesis of palladium nanocrystals and their electrocatalytic properties. Wang Q; Wang Y; Guo P; Li Q; Ding R; Wang B; Li H; Liu J; Zhao XS Langmuir; 2014 Jan; 30(1):440-6. PubMed ID: 24369065 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of Nitrogen-Doped Mesoporous-Carbon-Coated Palladium Nanoparticles: An Intriguing Electrocatalyst for Methanol and Formic Acid Oxidation. Ray C; Dutta S; Sahoo R; Roy A; Negishi Y; Pal T Chem Asian J; 2016 May; 11(10):1588-96. PubMed ID: 27016895 [TBL] [Abstract][Full Text] [Related]
6. The size-controlled synthesis of Pd/C catalysts by different solvents for formic acid electrooxidation. Huang Y; Liao J; Liu C; Lu T; Xing W Nanotechnology; 2009 Mar; 20(10):105604. PubMed ID: 19417524 [TBL] [Abstract][Full Text] [Related]
7. Natural DNA-modified graphene/Pd nanoparticles as highly active catalyst for formic acid electro-oxidation and for the Suzuki reaction. Qu K; Wu L; Ren J; Qu X ACS Appl Mater Interfaces; 2012 Sep; 4(9):5001-9. PubMed ID: 22973944 [TBL] [Abstract][Full Text] [Related]
8. Additive-free fabrication of spherical hollow palladium/copper alloyed nanostructures for fuel cell application. Hu C; Guo Y; Wang J; Yang L; Yang Z; Bai Z; Zhang J; Wang K; Jiang K ACS Appl Mater Interfaces; 2012 Sep; 4(9):4461-4. PubMed ID: 22939194 [TBL] [Abstract][Full Text] [Related]
9. Shape-dependent electrocatalytic activity of monodispersed palladium nanocrystals toward formic acid oxidation. Zhang X; Yin H; Wang J; Chang L; Gao Y; Liu W; Tang Z Nanoscale; 2013 Sep; 5(18):8392-7. PubMed ID: 23884237 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of chestnut-bur-like palladium nanostructures and their enhanced electrocatalytic activities for ethanol oxidation. Ye SJ; Kim DY; Kang SW; Choi KW; Han SW; Park OO Nanoscale; 2014 Apr; 6(8):4182-7. PubMed ID: 24608517 [TBL] [Abstract][Full Text] [Related]
11. Shaping Pd nanocatalysts through the control of reaction sequence. Lee YW; Kim M; Han SW Chem Commun (Camb); 2010 Mar; 46(9):1535-7. PubMed ID: 20162173 [TBL] [Abstract][Full Text] [Related]
12. Nanoporous bimetallic Pt-Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid. Zhang Z; Wang Y; Wang X Nanoscale; 2011 Apr; 3(4):1663-74. PubMed ID: 21311802 [TBL] [Abstract][Full Text] [Related]
13. Facile synthesis of palladium right bipyramids and their use as seeds for overgrowth and as catalysts for formic acid oxidation. Xia X; Choi SI; Herron JA; Lu N; Scaranto J; Peng HC; Wang J; Mavrikakis M; Kim MJ; Xia Y J Am Chem Soc; 2013 Oct; 135(42):15706-9. PubMed ID: 24106797 [TBL] [Abstract][Full Text] [Related]
14. Hydrogenation of biofuels with formic acid over a palladium-based ternary catalyst with two types of active sites. Wang L; Zhang B; Meng X; Su DS; Xiao FS ChemSusChem; 2014 Jun; 7(6):1537-41. PubMed ID: 24861954 [TBL] [Abstract][Full Text] [Related]
15. [Synthesis, characterization and electrocatalytic performance of Pd/CMK-3 for formic acid oxidation]. Huan ZK; Zong EM; Wei D; Wan HQ; Zheng SR; Xu ZY Huan Jing Ke Xue; 2012 Oct; 33(10):3479-83. PubMed ID: 23233976 [TBL] [Abstract][Full Text] [Related]
16. "Raisin bun"-like nanocomposites of palladium clusters and porphyrin for superior formic acid oxidation. Wang X; Yang J; Yin H; Song R; Tang Z Adv Mater; 2013 May; 25(19):2728-32. PubMed ID: 23576297 [TBL] [Abstract][Full Text] [Related]
17. A facile synthesis of MPd (M = Co, Cu) nanoparticles and their catalysis for formic acid oxidation. Mazumder V; Chi M; Mankin MN; Liu Y; Metin Ö; Sun D; More KL; Sun S Nano Lett; 2012 Feb; 12(2):1102-6. PubMed ID: 22276672 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and assembly of Pd nanoparticles on graphene for enhanced electrooxidation of formic acid. Jin T; Guo S; Zuo JL; Sun S Nanoscale; 2013 Jan; 5(1):160-3. PubMed ID: 23172252 [TBL] [Abstract][Full Text] [Related]
19. Preparation of Pd-Co-based nanocatalysts and their superior applications in formic acid decomposition and methanol oxidation. Qin YL; Liu YC; Liang F; Wang LM ChemSusChem; 2015 Jan; 8(2):260-3. PubMed ID: 25504901 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and electrocatalytic activity of highly porous hollow palladium nanoshells for oxygen reduction in alkaline solution. Cho YB; Kim JE; Shim JH; Lee C; Lee Y Phys Chem Chem Phys; 2013 Jul; 15(27):11461-7. PubMed ID: 23748629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]