These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 22652701)

  • 1. Vertical and tilted Ag-NPs@ZnO nanorods by plasma-enhanced chemical vapour deposition.
    Macias-Montero M; Borras A; Saghi Z; Espinos JP; Barranco A; Cotrino J; Gonzalez-Elipe AR
    Nanotechnology; 2012 Jun; 23(25):255303. PubMed ID: 22652701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supported Ag-TiO(2) core-shell nanofibres formed at low temperature by plasma deposition.
    Borrás A; Barranco A; Yubero F; González-Elipe AR
    Nanotechnology; 2006 Jul; 17(14):3518-22. PubMed ID: 19661598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance.
    Ren C; Yang B; Wu M; Xu J; Fu Z; Lv Y; Guo T; Zhao Y; Zhu C
    J Hazard Mater; 2010 Oct; 182(1-3):123-9. PubMed ID: 20580489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser treatment of Ag@ZnO nanorods as long-life-span SERS surfaces.
    Macias-Montero M; Peláez RJ; Rico VJ; Saghi Z; Midgley P; Afonso CN; González-Elipe AR; Borras A
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2331-9. PubMed ID: 25575182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation.
    Han Y; Lupitskyy R; Chou TM; Stafford CM; Du H; Sukhishvili S
    Anal Chem; 2011 Aug; 83(15):5873-80. PubMed ID: 21644591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional ZnO/Ag nanorod array as highly sensitive substrate for surface enhanced Raman detection.
    Shan G; Zheng S; Chen S; Chen Y; Liu Y
    Colloids Surf B Biointerfaces; 2012 Jun; 94():157-62. PubMed ID: 22341990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-controlled electroless deposition method in the preparation of stacked silver nanoparticles on germanium for surface-enhanced infrared absorption measurements.
    Chang RL; Yang J
    Appl Spectrosc; 2010 Feb; 64(2):211-8. PubMed ID: 20149283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ag/ZnO nanomaterials as high performance sensors for flammable and toxic gases.
    Simon Q; Barreca D; Gasparotto A; Maccato C; Tondello E; Sada C; Comini E; Devi A; Fischer RA
    Nanotechnology; 2012 Jan; 23(2):025502. PubMed ID: 22166305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Straight and thin ZnO nanorods: hectogram-scale synthesis at low temperature and cathodoluminescence.
    Zhang H; Yang D; Ma X; Du N; Wu J; Que D
    J Phys Chem B; 2006 Jan; 110(2):827-30. PubMed ID: 16471610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved photocatalytic performance of ZnO nanograss decorated pore-array films by surface texture modification and silver nanoparticle deposition.
    Hung ST; Chang CJ; Hsu MH
    J Hazard Mater; 2011 Dec; 198():307-16. PubMed ID: 22056884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers.
    Willander M; Nur O; Zhao QX; Yang LL; Lorenz M; Cao BQ; Zúñiga Pérez J; Czekalla C; Zimmermann G; Grundmann M; Bakin A; Behrends A; Al-Suleiman M; El-Shaer A; Che Mofor A; Postels B; Waag A; Boukos N; Travlos A; Kwack HS; Guinard J; Le Si Dang D
    Nanotechnology; 2009 Aug; 20(33):332001. PubMed ID: 19636090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initial stages of few-layer graphene growth by microwave plasma-enhanced chemical vapour deposition.
    Vitchev R; Malesevic A; Petrov RH; Kemps R; Mertens M; Vanhulsel A; Van Haesendonck C
    Nanotechnology; 2010 Mar; 21(9):095602. PubMed ID: 20110582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure and optical properties of Ag-doped ZnO nanostructures prepared by a wet oxidation doping process.
    Chen R; Zou C; Bian J; Sandhu A; Gao W
    Nanotechnology; 2011 Mar; 22(10):105706. PubMed ID: 21289405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and evaluation of ZnO nanorods by liquid-phase deposition.
    Ichikawa T; Shiratori S
    Inorg Chem; 2011 Feb; 50(3):999-1004. PubMed ID: 21192712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of the shape of nanorod arrays on the nanocarpet effect.
    Fan JG; Fu JX; Collins A; Zhao YP
    Nanotechnology; 2008 Jan; 19(4):045713. PubMed ID: 21817530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autocatalytic growth of ZnO nanorods from flat Au(111)-supported ZnO films.
    Pascua L; Stavale F; Nilius N; Freund HJ
    Phys Chem Chem Phys; 2014 Dec; 16(48):26741-5. PubMed ID: 25370942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sonochemical synthesis of silver vanadium oxide micro/nanorods: solvent and surfactant effects.
    Mohandes F; Salavati-Niasari M
    Ultrason Sonochem; 2013 Jan; 20(1):354-65. PubMed ID: 22658636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nonenzymatic cholesterol sensor constructed by using porous tubular silver nanoparticles.
    Li Y; Bai H; Liu Q; Bao J; Han M; Dai Z
    Biosens Bioelectron; 2010 Jun; 25(10):2356-60. PubMed ID: 20456934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring and modifications of a ZnO nanostructure surface by the layer-by-layer deposition technique.
    Tse CW; Leung YH; Tam KH; Chan WK; Djurisić AB
    Nanotechnology; 2006 Jul; 17(14):3563-8. PubMed ID: 19661605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical and field-emission properties of ZnO nanostructures deposited using high-pressure pulsed laser deposition.
    Premkumar T; Zhou YS; Lu YF; Baskar K
    ACS Appl Mater Interfaces; 2010 Oct; 2(10):2863-9. PubMed ID: 20882957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.