These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 226528)

  • 21. Effects of alterations in cell phenotype and hypokalemia on sodium-potassium pump activity in rabbit vascular smooth muscle.
    Little PJ; Bobik A
    Clin Exp Hypertens A; 1985; 7(11):1563-82. PubMed ID: 3002673
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sidedness of the effects of sodium and potassium ions on the conformational state of the sodium-potassium pump.
    Karlish SJ; Pick U
    J Physiol; 1981 Mar; 312():505-29. PubMed ID: 6267267
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional reconstitution of the sodium pump. Kinetics of exchange reactions performed by reconstituted Na/K-ATPase.
    Cornelius F
    Biochim Biophys Acta; 1991 Mar; 1071(1):19-66. PubMed ID: 1848452
    [No Abstract]   [Full Text] [Related]  

  • 24. Interaction of (Na+ + K+)-ATPase with artificial membranes. II. Expression of partial transport reactions.
    Anner BM
    Biochim Biophys Acta; 1985 Dec; 822(3-4):335-53. PubMed ID: 2415163
    [No Abstract]   [Full Text] [Related]  

  • 25. (Na,K)-ATPase-mediated cation pumping in cultured rat hepatocytes. Rapid modulation by alanine and taurocholate transport and characterization of its relationship to intracellular sodium concentration.
    Van Dyke RW; Scharschmidt BF
    J Biol Chem; 1983 Nov; 258(21):12912-9. PubMed ID: 6138354
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Passive rubidium fluxes mediated by Na-K-ATPase reconstituted into phospholipid vesicles when ATP- and phosphate-free.
    Karlish SJ; Stein WD
    J Physiol; 1982 Jul; 328():295-316. PubMed ID: 6290646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of hyperoxia on type II cell Na-K-ATPase function and expression.
    Carter EP; Wangensteen OD; O'Grady SM; Ingbar DH
    Am J Physiol; 1997 Mar; 272(3 Pt 1):L542-51. PubMed ID: 9124612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reconstitution of (Na+ + K+)-ATPase into phospholipid vesicles with full recovery of its specific activity.
    Cornelius F; Skou JC
    Biochim Biophys Acta; 1984 May; 772(3):357-73. PubMed ID: 6326830
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of ouabain on the release of [14C]acetylcholine and other substances from synaptosomes.
    Vyas S; Marchbanks RM
    J Neurochem; 1981 Dec; 37(6):1467-74. PubMed ID: 6278077
    [No Abstract]   [Full Text] [Related]  

  • 30. Stimulation of Rb+ transport by glucagon in isolated rat hepatocytes.
    Ihlenfeldt MJ
    J Biol Chem; 1981 Mar; 256(5):2213-8. PubMed ID: 6257709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies of relationship between angiotensin II and potassium ions on aldosterone release.
    Foster R; Lobo MV; Marusic ET
    Am J Physiol; 1979 Oct; 237(4):E363-6. PubMed ID: 227270
    [No Abstract]   [Full Text] [Related]  

  • 32. The Na+-K+-pump, energy metabolism, and obesity.
    Clausen T; Hansen O
    Biochem Biophys Res Commun; 1982 Jan; 104(2):357-62. PubMed ID: 6280694
    [No Abstract]   [Full Text] [Related]  

  • 33. Active chloride transport powered by Na-K-ATPase in shark rectal gland.
    Epstein FH; Silva P; Stoff J
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():106-22. PubMed ID: 210993
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of sodium and potassium ions with Na+,K+-ATPase. I. Ouabain-sensitive alternative binding of three Na+ or two K+ to the enzyme.
    Matsui H; Homareda H
    J Biochem; 1982 Jul; 92(1):193-217. PubMed ID: 6288671
    [No Abstract]   [Full Text] [Related]  

  • 35. Inhibition of protein kinase C, (sodium plus potassium)-activated adenosine triphosphatase, and sodium pump by synthetic phospholipid analogues.
    Zheng B; Oishi K; Shoji M; Eibl H; Berdel WE; Hajdu J; Vogler WR; Kuo JF
    Cancer Res; 1990 May; 50(10):3025-31. PubMed ID: 2159369
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Na,K-ATPase polypeptide upregulation responses in lens epithelium.
    Delamere NA; Manning RE; Liu L; Moseley AE; Dean WL
    Invest Ophthalmol Vis Sci; 1998 Apr; 39(5):763-8. PubMed ID: 9538883
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of two-sided bifunctional liposomes in the study of a hypothalamic Na,K-ATPase inhibitor.
    Anner BM; Haupert GT
    J Cardiovasc Pharmacol; 1993; 22 Suppl 2():S51-3. PubMed ID: 7508028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. (Na+,K+)-cotransport in the Madin-Darby canine kidney cell line. Kinetic characterization of the interaction between Na+ and K+.
    Rindler MJ; McRoberts JA; Saier MH
    J Biol Chem; 1982 Mar; 257(5):2254-9. PubMed ID: 6277889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. K⁺ and Rb⁺ Affinities of the Na,K-ATPase α₁ and α₂ Isozymes: An Application of ICP-MS for Quantification of Na⁺ Pump Kinetics in Myofibers.
    Hakimjavadi H; Stiner CA; Radzyukevich TL; Lingrel JB; Norman N; Landero Figueroa JA; Heiny JA
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30213059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ouabain-sensitive 86Rb(K) influx is linked to transepithelial Na transport in pig kidney cell line.
    Sanders MJ; Misfeldt DS
    Biochim Biophys Acta; 1982 Mar; 685(3):383-5. PubMed ID: 7066317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.