These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 2265302)

  • 1. A finite element analysis of the natural frequencies of vibration of the human tympanic membrane. Part I.
    Williams KR; Lesser TH
    Br J Audiol; 1990 Oct; 24(5):319-27. PubMed ID: 2265302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural frequencies of vibration of a fibre supported human tympanic membrane analysed by the finite element method.
    Williams KR; Lesser TH
    Clin Otolaryngol Allied Sci; 1993 Oct; 18(5):375-86. PubMed ID: 8877203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of varying tympanic-membrane material properties on human middle-ear sound transmission in a three-dimensional finite-element model.
    O'Connor KN; Cai H; Puria S
    J Acoust Soc Am; 2017 Nov; 142(5):2836. PubMed ID: 29195482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of parameters for the middle ear model.
    Bornitz M; Zahnert T; Hardtke H; Hüttenbrink K
    Audiol Neurootol; 1999; 4(3-4):163-9. PubMed ID: 10187925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the undamped natural frequencies and mode shapes of a finite-element model of the cat eardrum.
    Funnell WR
    J Acoust Soc Am; 1983 May; 73(5):1657-61. PubMed ID: 6863742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling sound transmission of human middle ear and its clinical applications using finite element analysis.
    Chen SI; Lee MH; Yao CM; Chen PR; Chou YF; Liu TC; Song YL; Lee CF
    Kaohsiung J Med Sci; 2013 Mar; 29(3):133-9. PubMed ID: 23465416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanics of the tympanic membrane.
    Volandri G; Di Puccio F; Forte P; Carmignani C
    J Biomech; 2011 Apr; 44(7):1219-36. PubMed ID: 21376326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How flexibility and eardrum cone shape affect sound conduction in single-ossicle ears: a dynamic model study of the chicken middle ear.
    Muyshondt PGG; Dirckx JJJ
    Biomech Model Mechanobiol; 2020 Feb; 19(1):233-249. PubMed ID: 31372910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Experimental study of vibration analysis in middle ear models by holographic interferometry. Effects of the cross-sectioned area of aditus on the vibration of tympanic membrane].
    Ishihara M
    Nihon Jibiinkoka Gakkai Kaiho; 1989 May; 92(5):726-35. PubMed ID: 2614565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling of components of the human middle ear and simulation of their dynamic behaviour.
    Beer HJ; Bornitz M; Hardtke HJ; Schmidt R; Hofmann G; Vogel U; Zahnert T; Hüttenbrink KB
    Audiol Neurootol; 1999; 4(3-4):156-62. PubMed ID: 10187924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of the human middle ear using the finite-element method.
    Koike T; Wada H; Kobayashi T
    J Acoust Soc Am; 2002 Mar; 111(3):1306-17. PubMed ID: 11931308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mode shapes of a damaged and repaired tympanic membrane as analysed by the finite element method.
    Williams KR; Blayney AW; Lesser TH
    Clin Otolaryngol Allied Sci; 1997 Apr; 22(2):126-31. PubMed ID: 9160924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A critical review of experimental observations on ear-drum structure and function.
    Funnell WR; Laszlo CA
    ORL J Otorhinolaryngol Relat Spec; 1982; 44(4):181-205. PubMed ID: 7050811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of single-ossicle ear flexibility and eardrum cone orientation on quasi-static behavior of the chicken middle ear.
    Muyshondt PGG; Aerts P; Dirckx JJJ
    Hear Res; 2019 Jul; 378():13-22. PubMed ID: 30482533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of pars flaccida on sound conduction in ears of Mongolian gerbil: acoustic and anatomical measurements.
    Teoh SW; Flandermeyer DT; Rosowski JJ
    Hear Res; 1997 Apr; 106(1-2):39-65. PubMed ID: 9112106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assigning viscoelastic and hyperelastic properties to the middle-ear soft tissues for sound transmission.
    Zhang J; Jiao C; Zou D; Ta N; Rao Z
    Biomech Model Mechanobiol; 2020 Jun; 19(3):957-970. PubMed ID: 31760601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of the cat eardrum as a thin shell using the finite-element method.
    Funnell WR; Laszlo CA
    J Acoust Soc Am; 1978 May; 63(5):1461-7. PubMed ID: 690327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the eardrum as a string with distributed force.
    Goll E; Dalhoff E
    J Acoust Soc Am; 2011 Sep; 130(3):1452-62. PubMed ID: 21895086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of middle ear pressure changes on umbo vibration.
    Gyo K; Goode RL
    Auris Nasus Larynx; 1987; 14(3):131-7. PubMed ID: 3451732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency characteristics of sound transmission in middle ears from Norwegian cattle, and the effect of static pressure differences across the tympanic membrane and the footplate.
    Kringlebotn M
    J Acoust Soc Am; 2000 Mar; 107(3):1442-50. PubMed ID: 10738799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.