BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 22653811)

  • 41. Characterization of a new form of inherited hypercholesterolemia: familial recessive hypercholesterolemia.
    Zuliani G; Arca M; Signore A; Bader G; Fazio S; Chianelli M; Bellosta S; Campagna F; Montali A; Maioli M; Pacifico A; Ricci G; Fellin R
    Arterioscler Thromb Vasc Biol; 1999 Mar; 19(3):802-9. PubMed ID: 10073989
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Coinheritance of two mild defects in low density lipoprotein receptor function produces severe hypercholesterolemia.
    Uauy R; Vega GL; Grundy SM
    J Clin Endocrinol Metab; 1991 Jan; 72(1):179-87. PubMed ID: 1986017
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sirolimus modifies cholesterol homeostasis in hepatic cells: a potential molecular mechanism for sirolimus-associated dyslipidemia.
    Ma KL; Ruan XZ; Powis SH; Chen Y; Moorhead JF; Varghese Z
    Transplantation; 2007 Oct; 84(8):1029-36. PubMed ID: 17989609
    [TBL] [Abstract][Full Text] [Related]  

  • 44. New Approaches in Detection and Treatment of Familial Hypercholesterolemia.
    Hartgers ML; Ray KK; Hovingh GK
    Curr Cardiol Rep; 2015 Dec; 17(12):109. PubMed ID: 26482752
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spectrum of mutations in index patients with familial hypercholesterolemia in Singapore: Single center study.
    Pek SLT; Dissanayake S; Fong JCW; Lin MX; Chan EZL; Tang JI; Lee CW; Ong HY; Sum CF; Lim SC; Tavintharan S
    Atherosclerosis; 2018 Feb; 269():106-116. PubMed ID: 29353225
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Triciribine increases LDLR expression and LDL uptake through stabilization of LDLR mRNA.
    Bjune K; Wierød L; Naderi S
    Sci Rep; 2018 Nov; 8(1):16174. PubMed ID: 30385871
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Drug Screen using Human iPSC-Derived Hepatocyte-like Cells Reveals Cardiac Glycosides as a Potential Treatment for Hypercholesterolemia.
    Cayo MA; Mallanna SK; Di Furio F; Jing R; Tolliver LB; Bures M; Urick A; Noto FK; Pashos EE; Greseth MD; Czarnecki M; Traktman P; Yang W; Morrisey EE; Grompe M; Rader DJ; Duncan SA
    Cell Stem Cell; 2017 Apr; 20(4):478-489.e5. PubMed ID: 28388428
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Resveratrol increases the expression and activity of the low density lipoprotein receptor in hepatocytes by the proteolytic activation of the sterol regulatory element-binding proteins.
    Yashiro T; Nanmoku M; Shimizu M; Inoue J; Sato R
    Atherosclerosis; 2012 Feb; 220(2):369-74. PubMed ID: 22153697
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Low density lipoprotein--receptor (LDL-R) gene mutations among Filipinos with familial hypercholesterolemia.
    Punzalan FE; Sy RG; Santos RS; Cutiongco EM; Gosiengfiao S; Fadriguilan E; George P; Laurie A
    J Atheroscler Thromb; 2005; 12(5):276-83. PubMed ID: 16205024
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A genetic variant in the LDLR promoter is responsible for part of the LDL-cholesterol variability in primary hypercholesterolemia.
    De Castro-Orós I; Pérez-López J; Mateo-Gallego R; Rebollar S; Ledesma M; León M; Cofán M; Casasnovas JA; Ros E; Rodríguez-Rey JC; Civeira F; Pocoví M
    BMC Med Genomics; 2014 Apr; 7():17. PubMed ID: 24708769
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabolic studies in familial hypercholesterolemia. Evidence for a gene-dosage effect in vivo.
    Bilheimer DW; Stone NJ; Grundy SM
    J Clin Invest; 1979 Aug; 64(2):524-33. PubMed ID: 222811
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Clinical studies in a kindred with a kinetic LDL receptor mutation causing familial hypercholesterolemia.
    Bilheimer DW; East C; Grundy SM; Nora JJ
    Am J Med Genet; 1985 Nov; 22(3):593-8. PubMed ID: 4061492
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Alginate oligosaccharide enhances LDL uptake via regulation of LDLR and PCSK9 expression.
    Yang JH; Bang MA; Jang CH; Jo GH; Jung SK; Ki SH
    J Nutr Biochem; 2015 Nov; 26(11):1393-400. PubMed ID: 26320675
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Relationship of Familial Hypercholesterolemia and High Low-Density Lipoprotein Cholesterol to Ischemic Stroke: Copenhagen General Population Study.
    Beheshti S; Madsen CM; Varbo A; Benn M; Nordestgaard BG
    Circulation; 2018 Aug; 138(6):578-589. PubMed ID: 29593013
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Association of specific LDL receptor gene mutations with differential plasma lipoprotein response to simvastatin in young French Canadians with heterozygous familial hypercholesterolemia.
    Couture P; Brun LD; Szots F; Lelièvre M; Gaudet D; Després JP; Simard J; Lupien PJ; Gagné C
    Arterioscler Thromb Vasc Biol; 1998 Jun; 18(6):1007-12. PubMed ID: 9633944
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The impact of severe LDL receptor mutations on SREBP-pathway regulation in homozygous familial hypercholesterolemia (FH).
    Soufi M; Ruppert V; Kurt B; Schaefer JR
    Gene; 2012 May; 499(1):218-22. PubMed ID: 22425645
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulation of apolipoprotein B secretion in hepatocytes from Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia.
    Tanaka M; Otani H; Yokode M; Kita T
    Atherosclerosis; 1995 Apr; 114(1):73-82. PubMed ID: 7605378
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Identification of a novel mutation at the point of low density lipoprotein receptor gene from a subject with familial hypercholesterolemia].
    Liu YR; Tao QM; Chen JZ; Tao M; Guo XG; Shang YP; Zhu JH; Zhang FR; Zheng LR; Wang XX
    Sheng Li Xue Bao; 2004 Oct; 56(5):566-72. PubMed ID: 15497035
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Differences in the phenotypic characteristics of subjects with familial defective apolipoprotein B-100 and familial hypercholesterolemia.
    Miserez AR; Keller U
    Arterioscler Thromb Vasc Biol; 1995 Oct; 15(10):1719-29. PubMed ID: 7583549
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of low-density lipoprotein catabolism by primary cultures of hepatic cells from normal and low-density lipoprotein receptor knockout mice.
    Truong TQ; Auger A; Denizeau F; Brissette L
    Biochim Biophys Acta; 2000 Apr; 1484(2-3):307-15. PubMed ID: 10760479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.