These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 22653873)
1. Bioavailability of cyanide and metal-cyanide mixtures to aquatic life. Redman A; Santore R Environ Toxicol Chem; 2012 Aug; 31(8):1774-80. PubMed ID: 22653873 [TBL] [Abstract][Full Text] [Related]
2. Development and application of a multimetal multibiotic ligand model for assessing aquatic toxicity of metal mixtures. Santore RC; Ryan AC Environ Toxicol Chem; 2015 Apr; 34(4):777-87. PubMed ID: 25556972 [TBL] [Abstract][Full Text] [Related]
3. A framework for ecological risk assessment of metal mixtures in aquatic systems. Nys C; Van Regenmortel T; Janssen CR; Oorts K; Smolders E; De Schamphelaere KAC Environ Toxicol Chem; 2018 Mar; 37(3):623-642. PubMed ID: 29135043 [TBL] [Abstract][Full Text] [Related]
4. Biotic ligand modeling approach: Synthesis of the effect of major cations on the toxicity of metals to soil and aquatic organisms. Ardestani MM; van Straalen NM; van Gestel CA Environ Toxicol Chem; 2015 Oct; 34(10):2194-204. PubMed ID: 25953362 [TBL] [Abstract][Full Text] [Related]
5. Toxicity of cobalt-complexed cyanide to Oncorhynchus mykiss, Daphnia magna, and Ceriodaphnia dubia. Potentiation by ultraviolet radiation and attenuation by dissolved organic carbon and adaptive UV tolerance. Little EE; Calfee RD; Theodorakos P; Brown ZA; Johnson CA Environ Sci Pollut Res Int; 2007 Jul; 14(5):333-7. PubMed ID: 17722768 [TBL] [Abstract][Full Text] [Related]
6. Predicting water quality criteria for protecting aquatic life from physicochemical properties of metals or metalloids. Wu F; Mu Y; Chang H; Zhao X; Giesy JP; Wu KB Environ Sci Technol; 2013 Jan; 47(1):446-53. PubMed ID: 23199259 [TBL] [Abstract][Full Text] [Related]
7. The two faces of DOC. Wood CM; Al-Reasi HA; Smith DS Aquat Toxicol; 2011 Oct; 105(3-4 Suppl):3-8. PubMed ID: 22099339 [TBL] [Abstract][Full Text] [Related]
8. Pesticidal copper (I) oxide: environmental fate and aquatic toxicity. Kiaune L; Singhasemanon N Rev Environ Contam Toxicol; 2011; 213():1-26. PubMed ID: 21541846 [TBL] [Abstract][Full Text] [Related]
9. Response predictions for organisms water-exposed to metal mixtures: a meta-analysis. Vijver MG; Elliott EG; Peijnenburg WJ; de Snoo GR Environ Toxicol Chem; 2011 Jun; 30(6):1482-7. PubMed ID: 21337610 [TBL] [Abstract][Full Text] [Related]
10. Critical load analysis in hazard assessment of metals using a Unit World Model. Gandhi N; Bhavsar SP; Diamond ML Environ Toxicol Chem; 2011 Sep; 30(9):2157-66. PubMed ID: 21713970 [TBL] [Abstract][Full Text] [Related]
11. Science, policy, and trends of metals risk assessment at EPA: how understanding metals bioavailability has changed metals risk assessment at US EPA. Reiley MC Aquat Toxicol; 2007 Aug; 84(2):292-8. PubMed ID: 17662477 [TBL] [Abstract][Full Text] [Related]
12. Applications of dynamic models in predicting the bioaccumulation, transport and toxicity of trace metals in aquatic organisms. Wang WX; Tan QG Environ Pollut; 2019 Sep; 252(Pt B):1561-1573. PubMed ID: 31277025 [TBL] [Abstract][Full Text] [Related]
13. Metal mixture toxicity to aquatic biota in laboratory experiments: application of the WHAM-FTOX model. Tipping E; Lofts S Aquat Toxicol; 2013 Oct; 142-143():114-22. PubMed ID: 23994673 [TBL] [Abstract][Full Text] [Related]
14. Toxicity of proton-metal mixtures in the field: linking stream macroinvertebrate species diversity to chemical speciation and bioavailability. Stockdale A; Tipping E; Lofts S; Ormerod SJ; Clements WH; Blust R Aquat Toxicol; 2010 Oct; 100(1):112-9. PubMed ID: 20701986 [TBL] [Abstract][Full Text] [Related]
15. Bioavailability Assessment of Metals in Freshwater Environments: A Historical Review. Adams W; Blust R; Dwyer R; Mount D; Nordheim E; Rodriguez PH; Spry D Environ Toxicol Chem; 2020 Jan; 39(1):48-59. PubMed ID: 31880839 [TBL] [Abstract][Full Text] [Related]
16. Comparative approaches to understand metal bioaccumulation in aquatic animals. Wang WX; Rainbow PS Comp Biochem Physiol C Toxicol Pharmacol; 2008 Nov; 148(4):315-23. PubMed ID: 18502695 [TBL] [Abstract][Full Text] [Related]
17. Application of toxicokinetic-toxicodynamic models in the aquatic ecological risk assessment of metals: A review. Gao Y Environ Toxicol Pharmacol; 2024 Sep; 110():104511. PubMed ID: 39025423 [TBL] [Abstract][Full Text] [Related]
18. Development and application of a biotic ligand model for predicting the chronic toxicity of dissolved and precipitated aluminum to aquatic organisms. Santore RC; Ryan AC; Kroglund F; Rodriguez PH; Stubblefield WA; Cardwell AS; Adams WJ; Nordheim E Environ Toxicol Chem; 2018 Jan; 37(1):70-79. PubMed ID: 29080370 [TBL] [Abstract][Full Text] [Related]
19. An application of the biotic ligand model to predict the toxic effects of metal mixtures. Kamo M; Nagai T Environ Toxicol Chem; 2008 Jul; 27(7):1479-87. PubMed ID: 18260697 [TBL] [Abstract][Full Text] [Related]
20. A critical review of the effects of gold cyanide-bearing tailings solutions on wildlife. Donato DB; Nichols O; Possingham H; Moore M; Ricci PF; Noller BN Environ Int; 2007 Oct; 33(7):974-84. PubMed ID: 17540445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]