These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 22654636)
41. Identification of key genes and pathways in castrate-resistant prostate cancer by integrated bioinformatics analysis. Wu YP; Ke ZB; Lin F; Wen YA; Chen S; Li XD; Chen SH; Sun XL; Huang JB; Zheng QS; Xue XY; Wei Y; Xu N Pathol Res Pract; 2020 Oct; 216(10):153109. PubMed ID: 32853947 [TBL] [Abstract][Full Text] [Related]
42. Bioinformatics analysis and experimental validation of TTK as a biomarker for prognosis in non-small cell lung cancer. Chen J; Wu R; Xuan Y; Jiang M; Zeng Y Biosci Rep; 2020 Oct; 40(10):. PubMed ID: 32969465 [TBL] [Abstract][Full Text] [Related]
43. A Network-Based Integrative Workflow to Unravel Mechanisms Underlying Disease Progression. Khan FM; Sadeghi M; Gupta SK; Wolkenhauer O Methods Mol Biol; 2018; 1702():247-276. PubMed ID: 29119509 [TBL] [Abstract][Full Text] [Related]
44. From sequence to molecular pathology, and a mechanism driving the neuroendocrine phenotype in prostate cancer. Lapuk AV; Wu C; Wyatt AW; McPherson A; McConeghy BJ; Brahmbhatt S; Mo F; Zoubeidi A; Anderson S; Bell RH; Haegert A; Shukin R; Wang Y; Fazli L; Hurtado-Coll A; Jones EC; Hach F; Hormozdiari F; Hajirasouliha I; Boutros PC; Bristow RG; Zhao Y; Marra MA; Fanjul A; Maher CA; Chinnaiyan AM; Rubin MA; Beltran H; Sahinalp SC; Gleave ME; Volik SV; Collins CC J Pathol; 2012 Jul; 227(3):286-97. PubMed ID: 22553170 [TBL] [Abstract][Full Text] [Related]
45. Identifying New Candidate Genes and Chemicals Related to Prostate Cancer Using a Hybrid Network and Shortest Path Approach. Yuan F; Zhou Y; Wang M; Yang J; Wu K; Lu C; Kong X; Cai YD Comput Math Methods Med; 2015; 2015():462363. PubMed ID: 26504486 [TBL] [Abstract][Full Text] [Related]
46. Integrated transcriptomics explored the cancer-promoting genes CDKN3 in esophageal squamous cell cancer. Wang W; Liao K; Guo HC; Zhou S; Yu R; Liu Y; Pan Y; Pu J J Cardiothorac Surg; 2021 May; 16(1):148. PubMed ID: 34044866 [TBL] [Abstract][Full Text] [Related]
47. The molecular signature of the stroma response in prostate cancer-induced osteoblastic bone metastasis highlights expansion of hematopoietic and prostate epithelial stem cell niches. Ă–zdemir BC; Hensel J; Secondini C; Wetterwald A; Schwaninger R; Fleischmann A; Raffelsberger W; Poch O; Delorenzi M; Temanni R; Mills IG; van der Pluijm G; Thalmann GN; Cecchini MG PLoS One; 2014; 9(12):e114530. PubMed ID: 25485970 [TBL] [Abstract][Full Text] [Related]
48. Long noncoding RNA expression patterns in lymph node metastasis in colorectal cancer by microarray. Rui Q; Xu Z; Yang P; He Z Biomed Pharmacother; 2015 Oct; 75():12-8. PubMed ID: 26463626 [TBL] [Abstract][Full Text] [Related]
49. Identifying novel prostate cancer associated pathways based on integrative microarray data analysis. Wang Y; Chen J; Li Q; Wang H; Liu G; Jing Q; Shen B Comput Biol Chem; 2011 Jun; 35(3):151-8. PubMed ID: 21704261 [TBL] [Abstract][Full Text] [Related]
50. Robust edge-based biomarker discovery improves prediction of breast cancer metastasis. Adnan N; Lei C; Ruan J BMC Bioinformatics; 2020 Sep; 21(Suppl 14):359. PubMed ID: 32998692 [TBL] [Abstract][Full Text] [Related]
51. Knowledge-Guided "Community Network" Analysis Reveals the Functional Modules and Candidate Targets in Non-Small-Cell Lung Cancer. Wang F; Han S; Yang J; Yan W; Hu G Cells; 2021 Feb; 10(2):. PubMed ID: 33669233 [TBL] [Abstract][Full Text] [Related]
52. A systems biology-based classifier for hepatocellular carcinoma diagnosis. Zhang Y; Wang S; Li D; Zhnag J; Gu D; Zhu Y; He F PLoS One; 2011; 6(7):e22426. PubMed ID: 21829460 [TBL] [Abstract][Full Text] [Related]
53. An Integrated Microarray Analysis Reveals Significant Diagnostic and Prognostic Biomarkers in Pancreatic Cancer. Yang ZQ; Liu YJ; Zhou XL Med Sci Monit; 2020 Apr; 26():e921769. PubMed ID: 32235821 [TBL] [Abstract][Full Text] [Related]
55. GWAS meets microarray: are the results of genome-wide association studies and gene-expression profiling consistent? Prostate cancer as an example. Gorlov IP; Gallick GE; Gorlova OY; Amos C; Logothetis CJ PLoS One; 2009 Aug; 4(8):e6511. PubMed ID: 19652704 [TBL] [Abstract][Full Text] [Related]
56. Identification of SATB1 as a Specific Biomarker for Lymph Node Metastasis in Colorectal Cancer. Baba H; Ishikawa T; Mogushi K; Ishiguro M; Uetake H; Tanaka H; Sugihara K Anticancer Res; 2016 Aug; 36(8):4069-76. PubMed ID: 27466515 [TBL] [Abstract][Full Text] [Related]
57. Novel methods to identify biologically relevant genes for leukemia and prostate cancer from gene expression profiles. Chen AH; Tsau YW; Lin CH BMC Genomics; 2010 Apr; 11():274. PubMed ID: 20433712 [TBL] [Abstract][Full Text] [Related]
58. Global risk transformative prioritization for prostate cancer candidate genes in molecular networks. Chen L; Tai J; Zhang L; Shang Y; Li X; Qu X; Li W; Miao Z; Jia X; Wang H; Li W; He W Mol Biosyst; 2011 Sep; 7(9):2547-53. PubMed ID: 21735017 [TBL] [Abstract][Full Text] [Related]
59. Usefulness of the top-scoring pairs of genes for prediction of prostate cancer progression. Zhao H; Logothetis CJ; Gorlov IP Prostate Cancer Prostatic Dis; 2010 Sep; 13(3):252-9. PubMed ID: 20386565 [TBL] [Abstract][Full Text] [Related]
60. Breast Cancer Candidate Gene Detection Through Integration of Subcellular Localization Data With Protein-Protein Interaction Networks. Tang X; Xiao Q; Yu K IEEE Trans Nanobioscience; 2020 Jul; 19(3):556-561. PubMed ID: 32340955 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]