BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 22654783)

  • 1. Resveratrol neuroprotection in a chronic mouse model of multiple sclerosis.
    Fonseca-Kelly Z; Nassrallah M; Uribe J; Khan RS; Dine K; Dutt M; Shindler KS
    Front Neurol; 2012; 3():84. PubMed ID: 22654783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oral resveratrol reduces neuronal damage in a model of multiple sclerosis.
    Shindler KS; Ventura E; Dutt M; Elliott P; Fitzgerald DC; Rostami A
    J Neuroophthalmol; 2010 Dec; 30(4):328-39. PubMed ID: 21107122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intranasal Resveratrol Nanoparticles Enhance Neuroprotection in a Model of Multiple Sclerosis.
    Shamsher E; Khan RS; Davis BM; Dine K; Luong V; Cordeiro MF; Shindler KS
    Int J Mol Sci; 2024 Apr; 25(7):. PubMed ID: 38612856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SIRT1 activation confers neuroprotection in experimental optic neuritis.
    Shindler KS; Ventura E; Rex TS; Elliott P; Rostami A
    Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3602-9. PubMed ID: 17652729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticles Enhance Solubility and Neuroprotective Effects of Resveratrol in Demyelinating Disease.
    Shamsher E; Khan RS; Davis BM; Dine K; Luong V; Somavarapu S; Cordeiro MF; Shindler KS
    Neurotherapeutics; 2023 Jul; 20(4):1138-1153. PubMed ID: 37160530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of SIRT1 protein in neurons protects against experimental autoimmune encephalomyelitis through activation of multiple SIRT1 targets.
    Nimmagadda VK; Bever CT; Vattikunta NR; Talat S; Ahmad V; Nagalla NK; Trisler D; Judge SI; Royal W; Chandrasekaran K; Russell JW; Makar TK
    J Immunol; 2013 May; 190(9):4595-607. PubMed ID: 23547115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optic neuritis and retinal ganglion cell loss in a chronic murine model of multiple sclerosis.
    Quinn TA; Dutt M; Shindler KS
    Front Neurol; 2011; 2():50. PubMed ID: 21852980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laquinimod protects the optic nerve and retina in an experimental autoimmune encephalomyelitis model.
    Wilmes AT; Reinehr S; Kühn S; Pedreiturria X; Petrikowski L; Faissner S; Ayzenberg I; Stute G; Gold R; Dick HB; Kleiter I; Joachim SC
    J Neuroinflammation; 2018 Jun; 15(1):183. PubMed ID: 29903027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SIRT1 and NRF2 Gene Transfer Mediate Distinct Neuroprotective Effects Upon Retinal Ganglion Cell Survival and Function in Experimental Optic Neuritis.
    McDougald DS; Dine KE; Zezulin AU; Bennett J; Shindler KS
    Invest Ophthalmol Vis Sci; 2018 Mar; 59(3):1212-1220. PubMed ID: 29494741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of Nrf2 exacerbates the visual deficits and optic neuritis elicited by experimental autoimmune encephalomyelitis.
    Larabee CM; Desai S; Agasing A; Georgescu C; Wren JD; Axtell RC; Plafker SM
    Mol Vis; 2016; 22():1503-1513. PubMed ID: 28050123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal ganglion cell damage induced by spontaneous autoimmune optic neuritis in MOG-specific TCR transgenic mice.
    Guan Y; Shindler KS; Tabuena P; Rostami AM
    J Neuroimmunol; 2006 Sep; 178(1-2):40-8. PubMed ID: 16828169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted Krüppel-Like Factor 4 Gene Knock-Out in Retinal Ganglion Cells Improves Visual Function in Multiple Sclerosis Mouse Model.
    Talla V; Koilkonda R
    eNeuro; 2020; 7(2):. PubMed ID: 32165410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Varying Intranasal Treatment Regimens in ST266-Mediated Retinal Ganglion Cell Neuroprotection.
    Khan RS; Dine K; Wessel H; Brown L; Shindler KS
    J Neuroophthalmol; 2019 Jun; 39(2):191-199. PubMed ID: 30829880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glial pathology and retinal neurotoxicity in the anterior visual pathway in experimental autoimmune encephalomyelitis.
    Jin J; Smith MD; Kersbergen CJ; Kam TI; Viswanathan M; Martin K; Dawson TM; Dawson VL; Zack DJ; Whartenby K; Calabresi PA
    Acta Neuropathol Commun; 2019 Jul; 7(1):125. PubMed ID: 31366377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal ganglion cell loss induced by acute optic neuritis in a relapsing model of multiple sclerosis.
    Shindler KS; Guan Y; Ventura E; Bennett J; Rostami A
    Mult Scler; 2006 Oct; 12(5):526-32. PubMed ID: 17086896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amnion-Derived Multipotent Progenitor Cells Suppress Experimental Optic Neuritis and Myelitis.
    Khan RS; Ross AG; Willett K; Dine K; Banas R; Brown LR; Shindler KS
    Neurotherapeutics; 2021 Jan; 18(1):448-459. PubMed ID: 33067748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SIRT1 activating compounds reduce oxidative stress mediated neuronal loss in viral induced CNS demyelinating disease.
    Khan RS; Dine K; Das Sarma J; Shindler KS
    Acta Neuropathol Commun; 2014 Jan; 2():3. PubMed ID: 24383546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bowman-Birk inhibitor suppresses autoimmune inflammation and neuronal loss in a mouse model of multiple sclerosis.
    Touil T; Ciric B; Ventura E; Shindler KS; Gran B; Rostami A
    J Neurol Sci; 2008 Aug; 271(1-2):191-202. PubMed ID: 18544456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inflammatory demyelination induces axonal injury and retinal ganglion cell apoptosis in experimental optic neuritis.
    Shindler KS; Ventura E; Dutt M; Rostami A
    Exp Eye Res; 2008 Sep; 87(3):208-13. PubMed ID: 18653182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myelin-specific Th17 cells induce severe relapsing optic neuritis with irreversible loss of retinal ganglion cells in C57BL/6 mice.
    Larabee CM; Hu Y; Desai S; Georgescu C; Wren JD; Axtell RC; Plafker SM
    Mol Vis; 2016; 22():332-41. PubMed ID: 27122964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.