These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22654907)

  • 1. Fluorescence In Situ Hybridization for MicroRNA Detection in Archived Oral Cancer Tissues.
    Shi Z; Johnson JJ; Stack MS
    J Oncol; 2012; 2012():903581. PubMed ID: 22654907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstration of microRNA using
    Warford A; Rahman NS; Ribeiro DA; Uysal Onganer P
    Br J Biomed Sci; 2020 Jul; 77(3):135-141. PubMed ID: 32223721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust one-day in situ hybridization protocol for detection of microRNAs in paraffin samples using LNA probes.
    Jørgensen S; Baker A; Møller S; Nielsen BS
    Methods; 2010 Dec; 52(4):375-81. PubMed ID: 20621190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for conducting highly sensitive microRNA in situ hybridization and immunohistochemical analysis in pancreatic cancer.
    Sempere LF; Korc M
    Methods Mol Biol; 2013; 980():43-59. PubMed ID: 23359149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification.
    Silahtaroglu AN; Nolting D; Dyrskjøt L; Berezikov E; Møller M; Tommerup N; Kauppinen S
    Nat Protoc; 2007; 2(10):2520-8. PubMed ID: 17947994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ hybridization detection of calcitonin mRNA in routinely fixed, paraffin-embedded tissue sections: a comparison of different types of probes combined with tyramide signal amplification.
    Qian X; Bauer RA; Xu HS; Lloyd RV
    Appl Immunohistochem Mol Morphol; 2001 Mar; 9(1):61-9. PubMed ID: 11277417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromogenic In Situ Hybridization Methods for microRNA Biomarker Monitoring of Drug Safety and Efficacy.
    Gould BR; Damgaard T; Nielsen BS
    Methods Mol Biol; 2017; 1641():399-412. PubMed ID: 28748477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined fluorescent in situ hybridization for detection of microRNAs and immunofluorescent labeling for cell-type markers.
    Chaudhuri AD; Yelamanchili SV; Fox HS
    Front Cell Neurosci; 2013; 7():160. PubMed ID: 24065888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of small noncoding RNAs by in situ hybridization using probes of 2'-O-methyl RNA + LNA.
    Søe MJ; Dufva M; Holmstrøm K
    Methods Mol Biol; 2014; 1173():113-21. PubMed ID: 24920364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA detection in bone marrow cells by LNA-FISH.
    Debernardi S; Dixon-McIver A
    Methods Mol Biol; 2010; 667():33-45. PubMed ID: 20827525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [DNA microarrays-based microRNA expression profiles derived from formalin-fixed paraffin-embedded tissue blocks of squammous cell carcinoma of larynx].
    Li L; Zhang ZM; Liu Y; Wei MH; Xue LY; Zou SM; Di XB; Han NJ; Zhang KT; Xu ZG; Gao YN
    Zhonghua Bing Li Xue Za Zhi; 2010 Jun; 39(6):391-5. PubMed ID: 21055156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA In Situ Hybridization in Paraffin-Embedded Human Articular Cartilage and Mouse Knee Joints.
    Endisha H; Kapoor M
    Methods Mol Biol; 2021; 2245():93-103. PubMed ID: 33315197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated Five-Color Multiplex Co-detection of MicroRNA and Protein Expression in Fixed Tissue Specimens.
    Sempere LF; Zaluzec E; Kenyon E; Kiupel M; Moore A
    Methods Mol Biol; 2020; 2148():257-276. PubMed ID: 32394388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ detection of aspergillus 18s ribosomal RNA Sequences using a terminally biotinylated locked nucleic acid (LNA) probe.
    Montone KT; Feldman MD
    Diagn Mol Pathol; 2009 Dec; 18(4):239-42. PubMed ID: 19861892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the Presence of Oral Squamous Cell Carcinoma Using Commonly Dysregulated MicroRNA in Oral Swirls.
    Yap T; Koo K; Cheng L; Vella LJ; Hill AF; Reynolds E; Nastri A; Cirillo N; Seers C; McCullough M
    Cancer Prev Res (Phila); 2018 Aug; 11(8):491-502. PubMed ID: 29764807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA-based classifiers for diagnosis of oral cavity squamous cell carcinoma in tissue and plasma.
    Pedersen NJ; Jensen DH; Lelkaitis G; Kiss K; Charabi BW; Ullum H; Specht L; Schmidt AY; Nielsen FC; von Buchwald C
    Oral Oncol; 2018 Aug; 83():46-52. PubMed ID: 30098778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting microRNA in human cancer tissues with fluorescence in situ hybridization.
    Shi Z; Johnson JJ; Stack MS
    Methods Mol Biol; 2013; 1039():19-27. PubMed ID: 24026683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locked nucleic acid in situ hybridization analysis of miR-21 expression during colorectal cancer development.
    Yamamichi N; Shimomura R; Inada K; Sakurai K; Haraguchi T; Ozaki Y; Fujita S; Mizutani T; Furukawa C; Fujishiro M; Ichinose M; Shiogama K; Tsutsumi Y; Omata M; Iba H
    Clin Cancer Res; 2009 Jun; 15(12):4009-16. PubMed ID: 19509156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence in situ hybridization analysis of formalin fixed paraffin embedded tissues, including tissue microarrays.
    Summersgill BM; Shipley JM
    Methods Mol Biol; 2010; 659():51-70. PubMed ID: 20809303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene oxide-quenching-based fluorescence in situ hybridization (G-FISH) to detect RNA in tissue: Simple and fast tissue RNA diagnostics.
    Hwang DW; Choi Y; Kim D; Park HY; Kim KW; Kim MY; Park CK; Lee DS
    Nanomedicine; 2019 Feb; 16():162-172. PubMed ID: 30594658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.