These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 22654957)
1. A numerical method of reduced complexity for simulating vascular hemodynamics using coupled 0D lumped and 1D wave propagation models. Kroon W; Huberts W; Bosboom M; van de Vosse F Comput Math Methods Med; 2012; 2012():156094. PubMed ID: 22654957 [TBL] [Abstract][Full Text] [Related]
2. Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart. Formaggia L; Lamponi D; Tuveri M; Veneziani A Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):273-88. PubMed ID: 17132614 [TBL] [Abstract][Full Text] [Related]
3. First blood: An efficient, hybrid one- and zero-dimensional, modular hemodynamic solver. Wéber R; Gyürki D; Paál G Int J Numer Method Biomed Eng; 2023 May; 39(5):e3701. PubMed ID: 36948891 [TBL] [Abstract][Full Text] [Related]
4. A personalized 0D-1D model of cardiovascular system for the hemodynamic simulation of enhanced external counterpulsation. Zhang Q; Zhang Y; Hao L; Zhong Y; Wu K; Wang Z; Tian S; Lin Q; Wu G Comput Methods Programs Biomed; 2022 Dec; 227():107224. PubMed ID: 36379202 [TBL] [Abstract][Full Text] [Related]
5. A 1D-0D-3D coupled model for simulating blood flow and transport processes in breast tissue. Fritz M; Köppl T; Oden JT; Wagner A; Wohlmuth B; Wu C Int J Numer Method Biomed Eng; 2022 Jul; 38(7):e3612. PubMed ID: 35522186 [TBL] [Abstract][Full Text] [Related]
6. Zero-dimensional lumped approach to incorporate the dynamic part of the pressure at vessel junctions in a 1D wave propagation model. van den Boom T; Stevens R; Delhaas T; van de Vosse F; Huberts W Int J Numer Method Biomed Eng; 2018 Sep; 34(9):e3116. PubMed ID: 29927092 [TBL] [Abstract][Full Text] [Related]
7. Automated generation of 0D and 1D reduced-order models of patient-specific blood flow. Pfaller MR; Pham J; Verma A; Pegolotti L; Wilson NM; Parker DW; Yang W; Marsden AL Int J Numer Method Biomed Eng; 2022 Oct; 38(10):e3639. PubMed ID: 35875875 [TBL] [Abstract][Full Text] [Related]
8. Numerical coupling of 0D and 1D models in networks of vessels including transonic flow conditions. Application to short-term transient and stationary hemodynamic simulation of postural changes. Murillo J; García-Navarro P Int J Numer Method Biomed Eng; 2023 Nov; 39(11):e3751. PubMed ID: 38018384 [TBL] [Abstract][Full Text] [Related]
9. Reducing the number of parameters in 1D arterial blood flow modeling: less is more for patient-specific simulations. Epstein S; Willemet M; Chowienczyk PJ; Alastruey J Am J Physiol Heart Circ Physiol; 2015 Jul; 309(1):H222-34. PubMed ID: 25888513 [TBL] [Abstract][Full Text] [Related]
10. Development of a Numerical Method for Patient-Specific Cerebral Circulation Using 1D-0D Simulation of the Entire Cardiovascular System with SPECT Data. Zhang H; Fujiwara N; Kobayashi M; Yamada S; Liang F; Takagi S; Oshima M Ann Biomed Eng; 2016 Aug; 44(8):2351-2363. PubMed ID: 26721836 [TBL] [Abstract][Full Text] [Related]
11. A unified method for estimating pressure losses at vascular junctions. Mynard JP; Valen-Sendstad K Int J Numer Method Biomed Eng; 2015 Jul; 31(7):e02717. PubMed ID: 25833463 [TBL] [Abstract][Full Text] [Related]
12. Scalability and in vivo validation of a multiscale numerical model of the left coronary circulation. Mynard JP; Penny DJ; Smolich JJ Am J Physiol Heart Circ Physiol; 2014 Feb; 306(4):H517-28. PubMed ID: 24363304 [TBL] [Abstract][Full Text] [Related]
13. A coupled one dimension and transmission line model for arterial flow simulation. Baker N; Clarke R; Ho H Int J Numer Method Biomed Eng; 2020 Apr; 36(4):e3327. PubMed ID: 32068346 [TBL] [Abstract][Full Text] [Related]
14. A black-box decomposition approach for coupling heterogeneous components in hemodynamics simulations. Blanco PJ; Leiva JS; Buscaglia GC Int J Numer Method Biomed Eng; 2013 Mar; 29(3):408-27. PubMed ID: 23345261 [TBL] [Abstract][Full Text] [Related]
15. A multiscale approach for modelling wave propagation in an arterial segment. Pontrelli G Comput Methods Biomech Biomed Engin; 2004 Apr; 7(2):79-89. PubMed ID: 15203956 [TBL] [Abstract][Full Text] [Related]
16. [Numerical simulation of the relationship between blood pressure and blood stream of arteries]. Shi X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Dec; 22(6):1121-3, 1127. PubMed ID: 16422080 [TBL] [Abstract][Full Text] [Related]
17. A distributed lumped parameter model of blood flow with fluid-structure interaction. Pewowaruk R; Roldán-Alzate A Biomech Model Mechanobiol; 2021 Oct; 20(5):1659-1674. PubMed ID: 34076757 [TBL] [Abstract][Full Text] [Related]
18. Numerical simulation and fast method for the 0D-1D multi-scale coupled model and its application in ischemic brain tissue blood flow problems. Liu Y; Jia J; Zeng F; Jiang X Int J Numer Method Biomed Eng; 2024 Jun; 40(6):e3828. PubMed ID: 38646858 [TBL] [Abstract][Full Text] [Related]
19. A framework for incorporating 3D hyperelastic vascular wall models in 1D blood flow simulations. Coccarelli A; Carson JM; Aggarwal A; Pant S Biomech Model Mechanobiol; 2021 Aug; 20(4):1231-1249. PubMed ID: 33683514 [TBL] [Abstract][Full Text] [Related]
20. Direct 0D-3D coupling of a lattice Boltzmann methodology for fluid-structure aortic flow simulations. Wei H; Amlani F; Pahlevan NM Int J Numer Method Biomed Eng; 2023 May; 39(5):e3683. PubMed ID: 36629353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]