These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 22654990)

  • 1. An integrated neural model of semantic memory, lexical retrieval and category formation, based on a distributed feature representation.
    Ursino M; Cuppini C; Magosso E
    Cogn Neurodyn; 2011 Jun; 5(2):183-207. PubMed ID: 22654990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational model of the lexical-semantic system based on a grounded cognition approach.
    Ursino M; Cuppini C; Magosso E
    Front Psychol; 2010; 1():221. PubMed ID: 21833276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neural network model of semantic memory linking feature-based object representation and words.
    Cuppini C; Magosso E; Ursino M
    Biosystems; 2009 Jun; 96(3):195-205. PubMed ID: 19758544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A neural network for learning the meaning of objects and words from a featural representation.
    Ursino M; Cuppini C; Magosso E
    Neural Netw; 2015 Mar; 63():234-53. PubMed ID: 25569782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The formation of categories and the representation of feature saliency: analysis with a computational model trained with an Hebbian paradigm.
    Ursino M; Cuppini C; Magosso E
    J Integr Neurosci; 2013 Dec; 12(4):401-25. PubMed ID: 24372062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A semantic model to study neural organization of language in bilingualism.
    Ursino M; Cuppini C; Magosso E
    Comput Intell Neurosci; 2010; 2010():350269. PubMed ID: 20204173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A feature-based neurocomputational model of semantic memory.
    Ursino M; Cuppini C; Cappa SF; Catricalà E
    Cogn Neurodyn; 2018 Dec; 12(6):525-547. PubMed ID: 30483362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of abstract objects via neural oscillators: interaction among topological organization, associative memory and gamma band synchronization.
    Ursino M; Magosso E; Cuppini C
    IEEE Trans Neural Netw; 2009 Feb; 20(2):316-35. PubMed ID: 19171515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Object segmentation and recovery via neural oscillators implementing the similarity and prior knowledge gestalt rules.
    Ursino M; Magosso E; La Cara GE; Cuppini C
    Biosystems; 2006 Sep; 85(3):201-18. PubMed ID: 16635545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning.
    Fernandino L; Humphries CJ; Conant LL; Seidenberg MS; Binder JR
    J Neurosci; 2016 Sep; 36(38):9763-9. PubMed ID: 27656016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Spiking Neurocomputational Model of High-Frequency Oscillatory Brain Responses to Words and Pseudowords.
    Garagnani M; Lucchese G; Tomasello R; Wennekers T; Pulvermüller F
    Front Comput Neurosci; 2016; 10():145. PubMed ID: 28149276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological signatures of event words: Dissociating syntactic and semantic category effects in lexical processing.
    Lapinskaya N; Uzomah U; Bedny M; Lau E
    Neuropsychologia; 2016 Dec; 93(Pt A):151-157. PubMed ID: 27794431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Object segmentation and reconstruction via an oscillatory neural network: interaction among learning, memory, topological organization and gamma-band synchronization.
    Magosso E; Cuppini C; Ursino M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4953-6. PubMed ID: 17945869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward a brain-based componential semantic representation.
    Binder JR; Conant LL; Humphries CJ; Fernandino L; Simons SB; Aguilar M; Desai RH
    Cogn Neuropsychol; 2016; 33(3-4):130-74. PubMed ID: 27310469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding and segmentation via a neural mass model trained with Hebbian and anti-Hebbian mechanisms.
    Cona F; Zavaglia M; Ursino M
    Int J Neural Syst; 2012 Apr; 22(2):1250003. PubMed ID: 23627589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semantic feature production norms for manipulable objects.
    Valério D; Hussain A; Almeida J
    Cogn Neuropsychol; 2023; 40(3-4):167-185. PubMed ID: 38006205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Primacy of Experience in Language Processing: Semantic Priming Is Driven Primarily by Experiential Similarity.
    Fernandino L; Conant LL
    bioRxiv; 2023 Dec; ():. PubMed ID: 36993310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lexical factors in conceptual processes: The relationship between semantic representations and their corresponding phonological and orthographic lexical forms.
    Peleg O; Edelist L; Eviatar Z; Bergerbest D
    Mem Cognit; 2016 May; 44(4):519-37. PubMed ID: 26637339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New names for known things: on the association of novel word forms with existing semantic information.
    Dobel C; Junghöfer M; Breitenstein C; Klauke B; Knecht S; Pantev C; Zwitserlood P
    J Cogn Neurosci; 2010 Jun; 22(6):1251-61. PubMed ID: 19583468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Context effects in embodied lexical-semantic processing.
    van Dam WO; Rueschemeyer SA; Lindemann O; Bekkering H
    Front Psychol; 2010; 1():150. PubMed ID: 21833218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.