BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 22655016)

  • 1. Microfluidics based on ZnO/nanocrystalline diamond surface acoustic wave devices.
    Fu YQ; Garcia-Gancedo L; Pang HF; Porro S; Gu YW; Luo JK; Zu XT; Placido F; Wilson JI; Flewitt AJ; Milne WI
    Biomicrofluidics; 2012 Jun; 6(2):24105-2410511. PubMed ID: 22655016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanocrystalline ZnO film layer on silicon and its application to surface acoustic wave-based streaming.
    Lee DS; Luo J; Fu Y; Milne WI; Park NM; Kim SH; Jung MY; Maeng S
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4626-9. PubMed ID: 19049072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of UV Photodetection Properties of Hierarchical Core-Shell Heterostructures of a Natural Sericin Biopolymer with the Addition of ZnO Fabricated on Ultra-Nanocrystalline Diamond Layers.
    Saravanan A; Huang BR; Kathiravan D
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):3254-3264. PubMed ID: 31859477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation into mass loading sensitivity of sezawa wave mode-based surface acoustic wave sensors.
    Mohanan AA; Islam MS; Ali SH; Parthiban R; Ramakrishnan N
    Sensors (Basel); 2013 Feb; 13(2):2164-75. PubMed ID: 23389346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of guiding layers of surface acoustic wave devices: A review.
    Xu Z; Yuan YJ
    Biosens Bioelectron; 2018 Jan; 99():500-512. PubMed ID: 28823975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible SAW Microfluidic Devices as Wearable pH Sensors Based on ZnO Nanoparticles.
    Piro L; Lamanna L; Guido F; Balena A; Mariello M; Rizzi F; De Vittorio M
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34204874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of SAW properties of epitaxial ZnO films grown on R-Al2O3 substrates.
    Emanetoglu NW; Patounakis G; Liang S; Gorla CR; Wittstruck R; Lu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Sep; 48(5):1389-94. PubMed ID: 11570764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A surface acoustic wave-based immunosensing device using a nanocrystalline ZnO film on Si.
    Lee DS; Lee JH; Luo J; Fu Y; Milne WI; Maeng S; Jung MY; Park SH; Yoon HC
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7181-5. PubMed ID: 19908753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of surface acoustic waves propagating in ZnO-SiO2-Si multilayer structure.
    Zhang Z; Wen Z; Wang C
    Ultrasonics; 2013 Feb; 53(2):363-8. PubMed ID: 22840373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible surface acoustic wave resonators built on disposable plastic film for electronics and lab-on-a-chip applications.
    Jin H; Zhou J; He X; Wang W; Guo H; Dong S; Wang D; Xu Y; Geng J; Luo JK; Milne WI
    Sci Rep; 2013; 3():2140. PubMed ID: 23828169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Room-Temperature Ammonia Sensor Based on ZnO Nanorods Deposited on ST-Cut Quartz Surface Acoustic Wave Devices.
    Li W; Guo Y; Tang Y; Zu X; Ma J; Wang L; Fu YQ
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28513538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of characteristics of a LiNbO3/diamond surface acoustic wave.
    Shikata S; Hachigo A; Nakahata H; Narita M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Oct; 51(10):1308-13. PubMed ID: 15553515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability studies of ZnO and AlN thin film acoustic wave devices in acid and alkali harsh environments.
    Xiong S; Liu X; Zhou J; Liu Y; Shen Y; Yin X; Wu J; Tao R; Fu Y; Duan H
    RSC Adv; 2020 May; 10(33):19178-19184. PubMed ID: 35515426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Acoustic Wave Device with Reduced Insertion Loss by Electrospinning P(VDF-TrFE)/ZnO Nanocomposites.
    Augustine R; Sarry F; Kalarikkal N; Thomas S; Badie L; Rouxel D
    Nanomicro Lett; 2016; 8(3):282-290. PubMed ID: 30460288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Performance of ZnO/SiO
    Su R; Fu S; Shen J; Chen Z; Lu Z; Yang M; Wang R; Zeng F; Wang W; Song C; Pan F
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42378-42385. PubMed ID: 32830495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the c-axis preferred orientation of ZnO film on various metal electrodes.
    Choi SH; Kim JS
    Ultramicroscopy; 2008 Sep; 108(10):1288-91. PubMed ID: 18556123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Femtosecond Laser Micromachining of the Mask for Acoustofluidic Device Preparation.
    Wang Y; Qian J
    ACS Omega; 2023 Feb; 8(8):7838-7844. PubMed ID: 36873004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis on Characteristics of ZnO Surface Acoustic Wave with and without Micro-Structures.
    Huang HY; Chiang HJ; Wu CZ; Lin Y; Shen YK
    Micromachines (Basel); 2019 Jun; 10(7):. PubMed ID: 31262083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast Photoresponse and Long Lifetime UV Photodetectors and Field Emitters Based on ZnO/Ultrananocrystalline Diamond Films.
    Saravanan A; Huang BR; Lin JC; Keiser G; Lin IN
    Chemistry; 2015 Nov; 21(45):16017-26. PubMed ID: 26382200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Super-high-frequency SAW transducer utilizing AIN/ultrananocrystalline diamond architectures.
    Dow AB; Popov C; Schmid U; Kherani NP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Aug; 60(8):1581-6. PubMed ID: 25004528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.