These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 22655021)

  • 1. Geometrical effects in microfluidic-based microarrays for rapid, efficient single-cell capture of mammalian stem cells and plant cells.
    Lawrenz A; Nason F; Cooper-White JJ
    Biomicrofluidics; 2012 Jun; 6(2):24112-2411217. PubMed ID: 22655021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of geometry on dielectrophoretic trap stiffness in microparticle trapping.
    Rahman MRU; Kwak TJ; Woehl JC; Chang WJ
    Biomed Microdevices; 2021 Jun; 23(3):33. PubMed ID: 34185161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic-based hydrodynamic trap for single particles.
    Johnson-Chavarria EM; Tanyeri M; Schroeder CM
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-efficiency microfluidic device for size-selective trapping and sorting.
    Kim J; Erath J; Rodriguez A; Yang C
    Lab Chip; 2014 Jul; 14(14):2480-90. PubMed ID: 24850190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of the three-dimensional trap stiffness of a dielectrophoretic corral trap.
    Rahman MRU; Kwak TJ; Woehl JC; Chang WJ
    Electrophoresis; 2021 Mar; 42(5):644-655. PubMed ID: 33340119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new microfluidic device design for a defined positioning of neurons
    Walczuch K; Renze P; Ingensiep C; Degen R; Bui TP; Schnakenberg U; Bräunig P; Bui-Göbbels K
    Biomicrofluidics; 2017 Jul; 11(4):044103. PubMed ID: 28794814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trapping and releasing of single microparticles and cells in a microfluidic chip.
    Lv D; Zhang X; Xu M; Cao W; Liu X; Deng J; Yang J; Hu N
    Electrophoresis; 2022 Nov; 43(21-22):2165-2174. PubMed ID: 35730632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of microscale hydraulic jump phenomenon for hydrodynamic trap-and-release of microparticles.
    Park Y; Choi Y; Mitra D; Kang T; Lee LP
    Appl Phys Lett; 2010 Oct; 97(15):154101. PubMed ID: 21057671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element simulations of hydrodynamic trapping in microfluidic particle-trap array systems.
    Xu X; Li Z; Nehorai A
    Biomicrofluidics; 2013; 7(5):54108. PubMed ID: 24404071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Low Shear Flow-based Trapping of Biological Entities.
    Sohrabi Kashani A; Packirisamy M
    Sci Rep; 2019 Apr; 9(1):5511. PubMed ID: 30940862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-Scale Single Particle and Cell Trapping based on Rotating Electric Field Induced-Charge Electroosmosis.
    Wu Y; Ren Y; Tao Y; Hou L; Jiang H
    Anal Chem; 2016 Dec; 88(23):11791-11798. PubMed ID: 27806196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new approach to design an efficient micropost array for enhanced direct-current insulator-based dielectrophoretic trapping.
    Mohammadi M; Zare MJ; Madadi H; Sellarès J; Casals-Terré J
    Anal Bioanal Chem; 2016 Jul; 408(19):5285-94. PubMed ID: 27209592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and theoretical study on the microparticle trapping and release in a deformable nano-sieve channel.
    Chen X; Falzon L; Zhang J; Zhang X; Wang RQ; Du K
    Nanotechnology; 2020 Jan; 31(5):05LT01. PubMed ID: 31100734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-Way Particle Transport Using Oscillatory Flow in Asymmetric Traps.
    Lee J; Burns MA
    Small; 2018 Mar; 14(9):. PubMed ID: 29377529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the geometry of negative dielectrophoresis traps for particle immobilization in digital microfluidic platforms.
    Nejad HR; Chowdhury OZ; Buat MD; Hoorfar M
    Lab Chip; 2013 May; 13(9):1823-30. PubMed ID: 23511544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidic platform for trapping, releasing and super-resolution imaging of single cells.
    Zhou Y; Basu S; Wohlfahrt KJ; Lee SF; Klenerman D; Laue ED; Seshia AA
    Sens Actuators B Chem; 2016 Sep; 232():680-691. PubMed ID: 27594767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic device enabling high-efficiency single cell trapping.
    Jin D; Deng B; Li JX; Cai W; Tu L; Chen J; Wu Q; Wang WH
    Biomicrofluidics; 2015 Jan; 9(1):014101. PubMed ID: 25610513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of microfluidic microsphere-trap arrays.
    Xu X; Sarder P; Li Z; Nehorai A
    Biomicrofluidics; 2013; 7(1):14112. PubMed ID: 24404004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time Sequential Single-Cell Patterning with High Efficiency and High Density.
    Liu Y; Ren D; Ling X; Liang W; Li J; You Z; Yalikun Y; Tanaka Y
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30380644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.