These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 22655370)
1. Study of DDT and its derivatives DDD, DDE adsorption and degradation over Fe-SBA-15 at low temperature. Wang H; Tian H; Hao Z J Environ Sci (China); 2012; 24(3):536-40. PubMed ID: 22655370 [TBL] [Abstract][Full Text] [Related]
2. Using shell-tunable mesoporous Fe3O4@HMS and magnetic separation to remove DDT from aqueous media. Tian H; Li J; Shen Q; Wang H; Hao Z; Zou L; Hu Q J Hazard Mater; 2009 Nov; 171(1-3):459-64. PubMed ID: 19586720 [TBL] [Abstract][Full Text] [Related]
3. Multifunctional Fe₃O₄@nSiO₂@mSiO₂-Fe core-shell microspheres for highly efficient removal of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) from aqueous media. Tian H; Liu F; He J J Colloid Interface Sci; 2014 Oct; 431():90-6. PubMed ID: 24992299 [TBL] [Abstract][Full Text] [Related]
4. [Influence of the interaction between iron oxide and electron donor substances on 1,1,1-trichloro- 2, 2-bis (p-chlorophenyl) ethane ( DDT) reductive dechlorination in hydragric acrisols]. Liu CY; Xu XH; Wang Z; Yao TY Huan Jing Ke Xue; 2014 Nov; 35(11):4298-304. PubMed ID: 25639109 [TBL] [Abstract][Full Text] [Related]
5. Field validation of anaerobic degradation pathways for dichlorodiphenyltrichloroethane (DDT) and 13 metabolites in marine sediment cores from China. Yu HY; Bao LJ; Liang Y; Zeng EY Environ Sci Technol; 2011 Jun; 45(12):5245-52. PubMed ID: 21595473 [TBL] [Abstract][Full Text] [Related]
6. Efficient transformation of DDTs with Persulfate Activation by Zero-valent Iron Nanoparticles: A Mechanistic Study. Zhu C; Fang G; Dionysiou DD; Liu C; Gao J; Qin W; Zhou D J Hazard Mater; 2016 Oct; 316():232-41. PubMed ID: 27236432 [TBL] [Abstract][Full Text] [Related]
7. Dechlorination of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane by Aerobacter aerogenes. I. Metabolic products. Wedemeyer G Appl Microbiol; 1967 May; 15(3):569-74. PubMed ID: 6035049 [TBL] [Abstract][Full Text] [Related]
8. Enhanced biotransformation of DDTs by an iron- and humic-reducing bacteria Aeromonas hydrophila HS01 upon addition of goethite and anthraquinone-2,6-disulphonic disodium salt (AQDS). Cao F; Liu TX; Wu CY; Li FB; Li XM; Yu HY; Tong H; Chen MJ J Agric Food Chem; 2012 Nov; 60(45):11238-44. PubMed ID: 23095105 [TBL] [Abstract][Full Text] [Related]
9. Black Carbon Facilitated Dechlorination of DDT and its Metabolites by Sulfide. Ding K; Xu W Environ Sci Technol; 2016 Dec; 50(23):12976-12983. PubMed ID: 27934256 [TBL] [Abstract][Full Text] [Related]
10. Abiotic transformation of DDT in aqueous solutions. Pirnie EF; Talley JW; Hundal LS Chemosphere; 2006 Nov; 65(9):1576-82. PubMed ID: 16678884 [TBL] [Abstract][Full Text] [Related]
11. Novel Chryseobacterium sp. PYR2 degrades various organochlorine pesticides (OCPs) and achieves enhancing removal and complete degradation of DDT in highly contaminated soil. Qu J; Xu Y; Ai GM; Liu Y; Liu ZP J Environ Manage; 2015 Sep; 161():350-357. PubMed ID: 26203874 [TBL] [Abstract][Full Text] [Related]
12. Degradation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by brown-rot fungi. Purnomo AS; Kamei I; Kondo R J Biosci Bioeng; 2008 Jun; 105(6):614-21. PubMed ID: 18640600 [TBL] [Abstract][Full Text] [Related]
13. Extraction of DDT [1,1,1,-trichloro-2,2-bis(p-chlorophenyl)ethane] and its metabolites DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene] and DDD [1,1-dichloro-2,2-bis(p-chlorophenyl)-ethane]) from aged contaminated soil. Fitzpatrick LJ; Dean JR; Comber MH; Harradine K; Evans KP J Chromatogr A; 2000 Apr; 874(2):257-64. PubMed ID: 10817364 [TBL] [Abstract][Full Text] [Related]
14. Adsorptive performance and catalytic activity of superparamagnetic Fe3O4@nSiO2@mSiO2 core-shell microspheres towards DDT. Liu F; Tian H; He J J Colloid Interface Sci; 2014 Apr; 419():68-72. PubMed ID: 24491332 [TBL] [Abstract][Full Text] [Related]
15. Sources and transformation pathways for dichlorodiphenyltrichloroethane (DDT) and metabolites in soils from Northwest Fujian, China. Huang H; Zhang Y; Chen W; Chen W; Yuen DA; Ding Y; Chen Y; Mao Y; Qi S Environ Pollut; 2018 Apr; 235():560-570. PubMed ID: 29329097 [TBL] [Abstract][Full Text] [Related]
16. Effect of Aeromonas hydrophila on reductive dechlorination of DDTs by zero-valent iron. Cao F; Li FB; Liu TX; Huang DY; Wu CY; Feng CH; Li XM J Agric Food Chem; 2010 Dec; 58(23):12366-72. PubMed ID: 21062044 [TBL] [Abstract][Full Text] [Related]
17. Nanoscale zerovalent iron-mediated degradation of DDT in soil. Han Y; Shi N; Wang H; Pan X; Fang H; Yu Y Environ Sci Pollut Res Int; 2016 Apr; 23(7):6253-63. PubMed ID: 26611630 [TBL] [Abstract][Full Text] [Related]
18. Abilities of Co-cultures of Brown-Rot Fungus Fomitopsis pinicola and Bacillus subtilis on Biodegradation of DDT. Sariwati A; Purnomo AS; Kamei I Curr Microbiol; 2017 Sep; 74(9):1068-1075. PubMed ID: 28642970 [TBL] [Abstract][Full Text] [Related]
19. Rapid determination of dichlorodiphenyltrichloroethane and its main metabolites in aqueous samples by one-step microwave-assisted headspace controlled-temperature liquid-phase microextraction and gas chromatography with electron capture detection. Vinoth Kumar P; Jen JF Chemosphere; 2011 Mar; 83(2):200-7. PubMed ID: 21251695 [TBL] [Abstract][Full Text] [Related]
20. Magnetic α-Fe2O3/MCM-41 nanocomposites: preparation, characterization, and catalytic activity for methylene blue degradation. Ursachi I; Stancu A; Vasile A J Colloid Interface Sci; 2012 Jul; 377(1):184-90. PubMed ID: 22520708 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]