These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22655391)

  • 1. Optimum conditions for the formation of Al13 polymer and active chlorine in electrolysis process with Ti/RuO2-TiO2 anodes.
    Hu C; Liu H; Qu J
    J Environ Sci (China); 2012; 24(2):297-302. PubMed ID: 22655391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimum conditions for Al13 polymer formation in PACl preparation by electrolysis process.
    Qu J; Liu H
    Chemosphere; 2004 Apr; 55(1):51-6. PubMed ID: 14720546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. As(III) oxidation by active chlorine and subsequent removal of As(V) by Al13 polymer coagulation using a novel dual function reagent.
    Hu C; Liu H; Chen G; Jefferson WA; Qu J
    Environ Sci Technol; 2012 Jun; 46(12):6776-82. PubMed ID: 22594638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the formation of oxidants and by-products using Pt/Ti, RuO2/Ti, and IrO2/Ti electrodes in the electrochemical process.
    Yoon Y; Cho E; Jung Y; Kwon M; Yoon J; Kang JW
    Environ Technol; 2015; 36(1-4):317-26. PubMed ID: 25514133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coagulation and disinfection efficiency of an electrochemically prepared dual-function reagent in municipal wastewater.
    Hu C; Liu H; Qu J; Wang Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(10):2387-98. PubMed ID: 17018420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical oxidation of Microcystis aeruginosa using a Ti/RuO
    Lin L; Meng X; Li Q; Huang Z; Wang L; Lin K; Chen J; Crittenden J
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):27924-27934. PubMed ID: 30058039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrocatalytic degradation of bromocresol green wastewater on Ti/SnO
    Bai H; He P; Chen J; Liu K; Lei H; Zhang X; Dong F; Li H
    Water Sci Technol; 2017 Jan; 75(1-2):220-227. PubMed ID: 28067662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation of algal viability during electrochemical disinfection using Ti/RuO2 electrodes.
    Liang W; Wang K; Chen L; Ruan L; Sui L
    Water Sci Technol; 2011; 64(1):162-70. PubMed ID: 22053471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical degradation of polycyclic aromatic hydrocarbons in creosote solution using ruthenium oxide on titanium expanded mesh anode.
    Tran LH; Drogui P; Mercier G; Blais JF
    J Hazard Mater; 2009 May; 164(2-3):1118-29. PubMed ID: 18926633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on inhibitive behaviors of electrolysis on the growth of Microcystis aeruginosa.
    Xu YF; Yang J; Ou MM; Wang YL; Jia JP; Pan HD
    Environ Technol; 2006 Jun; 27(6):673-82. PubMed ID: 16865923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical treatment of Procion Black 5B using cylindrical flow reactor--a pilot plant study.
    Raghu S; Basha CA
    J Hazard Mater; 2007 Jan; 139(2):381-90. PubMed ID: 17008006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical oxidation as a final treatment of synthetic tannery wastewater.
    Panizza M; Cerisola G
    Environ Sci Technol; 2004 Oct; 38(20):5470-5. PubMed ID: 15543753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient cephalexin degradation using active chlorine produced on ruthenium and iridium oxide anodes: Role of bath composition, analysis of degradation pathways and degradation extent.
    Perea LA; Palma-Goyes RE; Vazquez-Arenas J; Romero-Ibarra I; Ostos C; Torres-Palma RA
    Sci Total Environ; 2019 Jan; 648():377-387. PubMed ID: 30121037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of electrolysis time and electric potential on chlorine generation of electrolyzed deep ocean water.
    Hsu GW; Lu YF; Hsu SY
    J Food Drug Anal; 2017 Oct; 25(4):759-765. PubMed ID: 28987351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance Ti/Sb-SnO(2)/Pb(3)O(4) electrodes for chlorine evolution: preparation and characteristics.
    Shao D; Yan W; Cao L; Li X; Xu H
    J Hazard Mater; 2014 Feb; 267():238-44. PubMed ID: 24462893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coagulation behavior of aluminum salts in eutrophic water: significance of Al13 species and pH control.
    Hu C; Liu H; Qu J; Wang D; Rut J
    Environ Sci Technol; 2006 Jan; 40(1):325-31. PubMed ID: 16433368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes.
    Li XY; Cui YH; Feng YJ; Xie ZM; Gu JD
    Water Res; 2005 May; 39(10):1972-81. PubMed ID: 15882890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green synthesis and characterization of binary, ternary, and quaternary Ti/MMO anodes for chlorine and oxygen evolution reactions.
    Abdel-Aziz AB; Heakal FE; El Nashar RM; Ghayad IM
    Sci Rep; 2024 Apr; 14(1):9821. PubMed ID: 38684728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate of hydrolyzed Al species in humic acid coagulation.
    Lin JL; Huang C; Dempsey B; Hu JY
    Water Res; 2014 Jun; 56():314-24. PubMed ID: 24704984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and coagulation of a polyaluminum chloride (PAC) coagulant with high Al13 content.
    Gao BY; Chu YB; Yue QY; Wang BJ; Wang SG
    J Environ Manage; 2005 Jul; 76(2):143-7. PubMed ID: 15939126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.