BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2265565)

  • 21. Novel structural organisation of a Mus musculus DBA/2 chromosome shows a fixed position for the centromere.
    Mitchell AR; Nicol L; Malloy P; Kipling D
    J Cell Sci; 1993 Sep; 106 ( Pt 1)():79-85. PubMed ID: 8270645
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Restriction enzyme banding of mouse metaphase chromosomes.
    Kaelbling M; Miller DA; Miller OJ
    Chromosoma; 1984; 90(2):128-32. PubMed ID: 6090079
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-random occurrence of Robertsonian translocations in the house mouse (Mus musculus domesticus): is it related to quantitative variation in the minor satellite?
    Cazaux B; Catalan J; Claude J; Britton-Davidian J
    Cytogenet Genome Res; 2014; 144(2):124-30. PubMed ID: 25401386
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ORS12, a mammalian autonomously replicating DNA sequence, is present at the centromere of CV-1 cell chromosomes.
    Mah DC; Shihab-el-Deen A; Price GB; Zannis-Hadjopoulos M
    Exp Cell Res; 1992 Dec; 203(2):435-42. PubMed ID: 1459204
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mouse centromere mapping using oligonucleotide probes that detect variants of the minor satellite.
    Kipling D; Wilson HE; Mitchell AR; Taylor BA; Cooke HJ
    Chromosoma; 1994 Mar; 103(1):46-55. PubMed ID: 8013255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assignment of human satellite 1 DNA as revealed by fluorescent in situ hybridization with oligonucleotides.
    Tagarro I; Wiegant J; Raap AK; González-Aguilera JJ; Fernández-Peralta AM
    Hum Genet; 1994 Feb; 93(2):125-8. PubMed ID: 8112734
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of the origin of centromeres in whole-arm translocations using fluorescent in situ hybridization with alpha-satellite DNA probes.
    Tharapel AT; Qumsiyeh MB; Martens PR; Tharapel SA; Dalton JD; Ward JC; Wilroy RS
    Am J Med Genet; 1991 Jul; 40(1):117-20. PubMed ID: 1887840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A GC-rich satellite DNA and karyology of the bivalve mollusk Donax trunculus: a dominance of GC-rich heterochromatin.
    Petrović V; Pérez-García C; Pasantes JJ; Satović E; Prats E; Plohl M
    Cytogenet Genome Res; 2009; 124(1):63-71. PubMed ID: 19372670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ PCR (IS-PCR) to detect reduced amount of mouse minor satellite DNA.
    Marziliano N; Garagna S
    Eur J Histochem; 1997; 41 Suppl 2():165-6. PubMed ID: 9859832
    [No Abstract]   [Full Text] [Related]  

  • 30. The chromosomal distribution of the major and minor satellite is not conserved in the genus Mus.
    Wong AK; Biddle FG; Rattner JB
    Chromosoma; 1990 Jul; 99(3):190-5. PubMed ID: 2397658
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Telomere and centromere DNA are associated with the cores of meiotic prophase chromosomes.
    Moens PB; Pearlman RE
    Chromosoma; 1990 Dec; 100(1):8-14. PubMed ID: 2129288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cloning, characterization and physical mapping of three cervid satellite DNA families in the genome of the Formosan muntjac (Muntiacus reevesi micrurus).
    Lin CC; Chiang PY; Hsieh LJ; Liao SJ; Chao MC; Li YC
    Cytogenet Genome Res; 2004; 105(1):100-6. PubMed ID: 15218264
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Composition and chromosomal localization of cetacean highly repetitive DNA with special reference to the blue whale, Balaenoptera musculus.
    Arnason U; Widegren B
    Chromosoma; 1989 Nov; 98(5):323-9. PubMed ID: 2612291
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation, cloning and characterization of two major satellite DNA families of rabbit (Oryctolagus cuniculus).
    Ekes C; Csonka E; Hadlaczky G; Cserpán I
    Gene; 2004 Dec; 343(2):271-9. PubMed ID: 15588582
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Centromere Repositioning in Cattle (Bos taurus) Chromosome 17.
    De Lorenzi L; Iannuzzi A; Rossi E; Bonacina S; Parma P
    Cytogenet Genome Res; 2017; 151(4):191-197. PubMed ID: 28494439
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integration of human alpha-satellite DNA into simian chromosomes: centromere protein binding and disruption of normal chromosome segregation.
    Haaf T; Warburton PE; Willard HF
    Cell; 1992 Aug; 70(4):681-96. PubMed ID: 1505032
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The identification of mouse cloned SFA DNA].
    Yi N; Wu WQ; Ni ZM; Shi LJ
    Shi Yan Sheng Wu Xue Bao; 2002 Dec; 35(4):319-23. PubMed ID: 15346991
    [TBL] [Abstract][Full Text] [Related]  

  • 38. C-band polymorphisms in exotic inbred strains of mice: a method for mapping centromeric ends of chromosomes.
    Akeson EC; Davisson MT
    Cytogenet Cell Genet; 1991; 57(4):217-20. PubMed ID: 1743078
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular characterization of the smallest secondary constriction region (qh) of human chromosome 16.
    Verma RS; Luke S; Mathews T; Conte RA
    Genet Anal Tech Appl; 1992; 9(5-6):140-2. PubMed ID: 1363590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A stable marker chromosome with a cryptic centromere: evidence for centromeric sequences associated with an inverted duplication.
    Sacchi N; Magnani I; Fuhrman-Conti AM; Monard SP; Darfler M
    Cytogenet Cell Genet; 1996; 73(1-2):123-9. PubMed ID: 8646879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.