These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 2265566)

  • 1. Molecular cytogenetic evidence to characterize breakpoint regions in Robertsonian translocations.
    Cheung SW; Sun L; Featherstone T
    Cytogenet Cell Genet; 1990; 54(3-4):97-102. PubMed ID: 2265566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Robertsonian translocations by using fluorescence in situ hybridization.
    Wolff DJ; Schwartz S
    Am J Hum Genet; 1992 Jan; 50(1):174-81. PubMed ID: 1729886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for structural heterogeneity from molecular cytogenetic analysis of dicentric Robertsonian translocations.
    Sullivan BA; Jenkins LS; Karson EM; Leana-Cox J; Schwartz S
    Am J Hum Genet; 1996 Jul; 59(1):167-75. PubMed ID: 8659523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breakpoints in Robertsonian translocations are localized to satellite III DNA by fluorescence in situ hybridization.
    Gravholt CH; Friedrich U; Caprani M; Jørgensen AL
    Genomics; 1992 Dec; 14(4):924-30. PubMed ID: 1478673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Study of alpha-satellite DNA in cosmid libraries, specific for chromosomes 13, 21, and 22, using fluorescence in situ hybridization].
    Solov'ev IV; Iurov IuB; Vorsanova SG; Marcais B; Rogaev EI; Kapanadze BI; Brodianskiĭ VM; Iankovskiĭ NK; Roizes G
    Genetika; 1998 Nov; 34(11):1470-9. PubMed ID: 10096024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 15q duplication associated with autism in a multiplex family with a familial cryptic translocation t(14;15)(q11.2;q13.3) detected using array-CGH.
    Koochek M; Harvard C; Hildebrand MJ; Van Allen M; Wingert H; Mickelson E; Holden JJ; Rajcan-Separovic E; Lewis ME
    Clin Genet; 2006 Feb; 69(2):124-34. PubMed ID: 16433693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of alpha-satellite DNA on human acrocentric chromosomes.
    Choo KH; Vissel B; Earle E
    Genomics; 1989 Aug; 5(2):332-44. PubMed ID: 2793186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined use of cytogenetic analysis and FISH for the identification of two antenatal de novo markers as Robertsonian translocations involving the p arms.
    Pierluigi M; Battaglia P; Perfumo C; Baroncini A; Bricarelli FD
    Ann Genet; 1997; 40(2):99-103. PubMed ID: 9259956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reproductive risk of the silent carrier of Robertsonian translocation.
    Kolgeci S; Kolgeci J; Azemi M; Shala R; Dakas A; Sopjani M
    Med Arch; 2013; 67(1):56-9. PubMed ID: 23678842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cytogenetic characterization of 17 rob(13q14q) Robertsonian translocations by FISH, narrowing the region containing the breakpoints.
    Han JY; Choo KH; Shaffer LG
    Am J Hum Genet; 1994 Nov; 55(5):960-7. PubMed ID: 7977359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uniparental disomy in fetuses diagnosed with balanced Robertsonian translocations: risk estimate.
    Silverstein S; Lerer I; Sagi M; Frumkin A; Ben-Neriah Z; Abeliovich D
    Prenat Diagn; 2002 Aug; 22(8):649-51. PubMed ID: 12210570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of DNA sequences flanking the breakpoint of human t(14q21q) Robertsonian translocations.
    Earle E; Shaffer LG; Kalitsis P; McQuillan C; Dale S; Choo KH
    Am J Hum Genet; 1992 Apr; 50(4):717-24. PubMed ID: 1550117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-color fish analysis of breakpoints on Robertsonian translocations.
    Takahashi Y; Fujita H; Nakamura Y; Kurahashi H
    Jpn J Hum Genet; 1997 Dec; 42(4):517-23. PubMed ID: 9560951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Detection of sperm chromosomes in Robertsonian translocation carriers by dual-color fluorescence in situ hybridization].
    Liu Y; Zhu H
    Zhonghua Nan Ke Xue; 2004 Feb; 10(2):90-3. PubMed ID: 15027178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FISHing for acrocentric associations between chromosomes 14 and 21 in human oogenesis.
    Cheng EY; Naluai-Cecchini T
    Am J Obstet Gynecol; 2004 Jun; 190(6):1781-5; discussion 1785-7. PubMed ID: 15284799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homologous alpha satellite sequences on human acrocentric chromosomes with selectivity for chromosomes 13, 14 and 21: implications for recombination between nonhomologues and Robertsonian translocations.
    Choo KH; Vissel B; Brown R; Filby RG; Earle E
    Nucleic Acids Res; 1988 Feb; 16(4):1273-84. PubMed ID: 2831495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robertsonian translocations and abnormal phenotypes. Groupe de Cytogénéticiens Français.
    Ann Genet; 1989; 32(1):5-9. PubMed ID: 2665630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rare non-Robertsonian translocation involving chromosomes 15 and 21.
    Baruffi MR; Souza DH; Silva RA; Ramos ES; Moretti-Ferreira D
    Sao Paulo Med J; 2013; 131(6):427-31. PubMed ID: 24346783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rare Robertsonian translocations and meiotic behaviour: sperm FISH analysis of t(13;15) and t(14;15) translocations: a case report.
    Moradkhani K; Puechberty J; Bhatt S; Lespinasse J; Vago P; Lefort G; Sarda P; Hamamah S; Pellestor F
    Hum Reprod; 2006 Dec; 21(12):3193-8. PubMed ID: 16917122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Moving satellites and unstable chromosome translocations: clinical and cytogenetic implications.
    Farrell SA; Winsor EJ; Markovic VD
    Am J Med Genet; 1993 Jul; 46(6):715-20. PubMed ID: 8362916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.