These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 2265569)
21. Evolutionary dynamics of two satellite DNA families in rock lizards of the genus Iberolacerta (Squamata, Lacertidae): different histories but common traits. Rojo V; Martínez-Lage A; Giovannotti M; González-Tizón AM; Nisi Cerioni P; Caputo Barucchi V; Galán P; Olmo E; Naveira H Chromosome Res; 2015 Sep; 23(3):441-61. PubMed ID: 26384818 [TBL] [Abstract][Full Text] [Related]
22. Scaffold attachment regions in centromere-associated DNA. Strissel PL; Espinosa R; Rowley JD; Swift H Chromosoma; 1996 Aug; 105(2):122-33. PubMed ID: 8753702 [TBL] [Abstract][Full Text] [Related]
23. Molecular cloning and characterization of satellite DNA sequences from constitutive heterochromatin of the habu snake (Protobothrops flavoviridis, Viperidae) and the Burmese python (Python bivittatus, Pythonidae). Matsubara K; Uno Y; Srikulnath K; Seki R; Nishida C; Matsuda Y Chromosoma; 2015 Dec; 124(4):529-39. PubMed ID: 26205503 [TBL] [Abstract][Full Text] [Related]
24. De novo chromosome formations by large-scale amplification of the centromeric region of mouse chromosomes. Keresö J; Praznovszky T; Cserpán I; Fodor K; Katona R; Csonka E; Fátyol K; Holló G; Szeles A; Ross AR; Sumner AT; Szalay AA; Hadlaczky G Chromosome Res; 1996 Apr; 4(3):226-39. PubMed ID: 8793208 [TBL] [Abstract][Full Text] [Related]
25. Heterochromatin, satellite DNA, and cell function. Structural DNA of eucaryotes may support and protect genes and aid in speciation. Yunis JJ; Yasmineh WG Science; 1971 Dec; 174(4015):1200-9. PubMed ID: 4943851 [TBL] [Abstract][Full Text] [Related]
26. Meiotic chromosome behaviour reflects levels of sequence divergence in Sus scrofa domestica satellite DNA. Jantsch M; Hamilton B; Mayr B; Schweizer D Chromosoma; 1990 Sep; 99(5):330-5. PubMed ID: 2265570 [TBL] [Abstract][Full Text] [Related]
27. Different evolutionary trails in the related genomes Cricetus cricetus and Peromyscus eremicus (Rodentia, Cricetidae) uncovered by orthologous satellite DNA repositioning. Louzada S; Paço A; Kubickova S; Adega F; Guedes-Pinto H; Rubes J; Chaves R Micron; 2008 Dec; 39(8):1149-55. PubMed ID: 18602266 [TBL] [Abstract][Full Text] [Related]
28. Comparative mapping of human alphoid satellite DNA repeat sequences in the great apes. Samonte RV; Ramesh KH; Verma RS Genetica; 1997; 101(2):97-104. PubMed ID: 9465402 [TBL] [Abstract][Full Text] [Related]
30. Centromeric and non-centromeric satellite DNA organisation differs in holocentric Rhynchospora species. Ribeiro T; Marques A; Novák P; Schubert V; Vanzela AL; Macas J; Houben A; Pedrosa-Harand A Chromosoma; 2017 Mar; 126(2):325-335. PubMed ID: 27645892 [TBL] [Abstract][Full Text] [Related]
31. Molecular cytogenetics of the equidae. II. purification and cytological localization of a (G + C)-rich satellite DNA from Equus hemionus onager and cross-species hybridization to E. asinus chromosomes. Gadi IK; Ryder OA Cytogenet Cell Genet; 1983; 35(2):124-30. PubMed ID: 6851669 [TBL] [Abstract][Full Text] [Related]
32. Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Plohl M; Luchetti A; Mestrović N; Mantovani B Gene; 2008 Feb; 409(1-2):72-82. PubMed ID: 18182173 [TBL] [Abstract][Full Text] [Related]
33. Characterization and evolutionary dynamics of a complex family of satellite DNA in the leaf beetle Chrysolina carnifex (Coleoptera, Chrysomelidae). Palomeque T; Muñoz-López M; Carrillo JA; Lorite P Chromosome Res; 2005; 13(8):795-807. PubMed ID: 16331411 [TBL] [Abstract][Full Text] [Related]
34. Fluorescence In Situ Hybridization (FISH)-Based Karyotyping Reveals Rapid Evolution of Centromeric and Subtelomeric Repeats in Common Bean (Phaseolus vulgaris) and Relatives. Iwata-Otsubo A; Radke B; Findley S; Abernathy B; Vallejos CE; Jackson SA G3 (Bethesda); 2016 Apr; 6(4):1013-22. PubMed ID: 26865698 [TBL] [Abstract][Full Text] [Related]
35. Application of cloned satellite DNA sequences to molecular-cytogenetic analysis of constitutive heterochromatin heteromorphisms in man. Yurov YB; Mitkevich SP; Alexandrov IA Hum Genet; 1987 Jun; 76(2):157-64. PubMed ID: 3475246 [TBL] [Abstract][Full Text] [Related]
36. Localization of Drosophila nasutoides satellite DNAs in metaphase chromosomes. Wheeler LL; Arrighi F; Cordeiro-Stone M; Lee CS Chromosoma; 1978 Dec; 70(1):41-50. PubMed ID: 738168 [TBL] [Abstract][Full Text] [Related]
37. Evolution of the structure and composition of house mouse satellite DNA sequences in the subgenus Mus (Rodentia: Muridea): a cytogenomic approach. Cazaux B; Catalan J; Justy F; Escudé C; Desmarais E; Britton-Davidian J Chromosoma; 2013 Jun; 122(3):209-20. PubMed ID: 23515652 [TBL] [Abstract][Full Text] [Related]
38. Human (Homo sapiens) and chimpanzee (Pan troglodytes) share similar ancestral centromeric alpha satellite DNA sequences but other fractions of heterochromatin differ considerably. Luke S; Verma RS Am J Phys Anthropol; 1995 Jan; 96(1):63-71. PubMed ID: 7726296 [TBL] [Abstract][Full Text] [Related]
39. Effect of location, organization, and repeat-copy number in satellite-DNA evolution. Navajas-Pérez R; Quesada del Bosque ME; Garrido-Ramos MA Mol Genet Genomics; 2009 Oct; 282(4):395-406. PubMed ID: 19653004 [TBL] [Abstract][Full Text] [Related]
40. Sequence analysis, chromosomal distribution and long-range organization show that rapid turnover of new and old pBuM satellite DNA repeats leads to different patterns of variation in seven species of the Drosophila buzzatii cluster. Kuhn GC; Sene FM; Moreira-Filho O; Schwarzacher T; Heslop-Harrison JS Chromosome Res; 2008; 16(2):307-24. PubMed ID: 18266060 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]