These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 22656042)
1. Dispersion state and humic acids concentration-dependent sorption of pyrene to carbon nanotubes. Zhang X; Kah M; Jonker MT; Hofmann T Environ Sci Technol; 2012 Jul; 46(13):7166-73. PubMed ID: 22656042 [TBL] [Abstract][Full Text] [Related]
2. Sorption behavior of carbon nanotubes: changes induced by functionalization, sonication and natural organic matter. Kah M; Zhang X; Hofmann T Sci Total Environ; 2014 Nov; 497-498():133-138. PubMed ID: 25128883 [TBL] [Abstract][Full Text] [Related]
3. Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Schierz A; Zänker H Environ Pollut; 2009 Apr; 157(4):1088-94. PubMed ID: 19010575 [TBL] [Abstract][Full Text] [Related]
4. Effect of humic acid on pyrene removal from water by polycation-clay mineral composites and activated carbon. Radian A; Mishael Y Environ Sci Technol; 2012 Jun; 46(11):6228-35. PubMed ID: 22545663 [TBL] [Abstract][Full Text] [Related]
5. Increased adsorption of sulfamethoxazole on suspended carbon nanotubes by dissolved humic acid. Pan B; Zhang D; Li H; Wu M; Wang Z; Xing B Environ Sci Technol; 2013 Jul; 47(14):7722-8. PubMed ID: 23742687 [TBL] [Abstract][Full Text] [Related]
6. Long-term colloidal stability of 10 carbon nanotube types in the absence/presence of humic acid and calcium. Schwyzer I; Kaegi R; Sigg L; Smajda R; Magrez A; Nowack B Environ Pollut; 2012 Oct; 169():64-73. PubMed ID: 22683482 [TBL] [Abstract][Full Text] [Related]
7. Effect of humic acids on physicochemical property and Cd(II) sorption of multiwalled carbon nanotubes. Tian X; Li T; Yang K; Xu Y; Lu H; Lin D Chemosphere; 2012 Nov; 89(11):1316-22. PubMed ID: 22726423 [TBL] [Abstract][Full Text] [Related]
8. Influence of the initial state of carbon nanotubes on their colloidal stability under natural conditions. Schwyzer I; Kaegi R; Sigg L; Magrez A; Nowack B Environ Pollut; 2011 Jun; 159(6):1641-8. PubMed ID: 21435759 [TBL] [Abstract][Full Text] [Related]
9. Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances. Chappell MA; George AJ; Dontsova KM; Porter BE; Price CL; Zhou P; Morikawa E; Kennedy AJ; Steevens JA Environ Pollut; 2009 Apr; 157(4):1081-7. PubMed ID: 19000646 [TBL] [Abstract][Full Text] [Related]
10. Sorption of peat humic acids to multi-walled carbon nanotubes. Wang X; Shu L; Wang Y; Xu B; Bai Y; Tao S; Xing B Environ Sci Technol; 2011 Nov; 45(21):9276-83. PubMed ID: 21928791 [TBL] [Abstract][Full Text] [Related]
11. Surface-bound humic acid increased Pb²⁺ sorption on carbon nanotubes. Lin D; Tian X; Li T; Zhang Z; He X; Xing B Environ Pollut; 2012 Aug; 167():138-47. PubMed ID: 22575094 [TBL] [Abstract][Full Text] [Related]
12. Adsorption of atrazine by natural organic matter and surfactant dispersed carbon nanotubes. Shi B; Zhuang X; Yan X; Lu J; Tang H J Environ Sci (China); 2010; 22(8):1195-202. PubMed ID: 21179958 [TBL] [Abstract][Full Text] [Related]
13. Size characterization of the associations between carbon nanotubes and humic acids in aqueous media by asymmetrical flow field-flow fractionation combined with multi-angle light scattering. Gigault J; Grassl B; Lespes G Chemosphere; 2012 Jan; 86(2):177-82. PubMed ID: 22079301 [TBL] [Abstract][Full Text] [Related]
14. Sorption mechanisms of perfluorinated compounds on carbon nanotubes. Deng S; Zhang Q; Nie Y; Wei H; Wang B; Huang J; Yu G; Xing B Environ Pollut; 2012 Sep; 168():138-44. PubMed ID: 22610037 [TBL] [Abstract][Full Text] [Related]
15. Distribution of sorbed phenanthrene and pyrene in different humic fractions of soils and importance of humin. Pan B; Xing BS; Liu WX; Tao S; Lin XM; Zhang XM; Zhang YX; Xiao Y; Dai HC; Yuan HS Environ Pollut; 2006 Sep; 143(1):24-33. PubMed ID: 16376468 [TBL] [Abstract][Full Text] [Related]
16. Metal impurities dominate the sorption of a commercially available carbon nanotube for Pb(II) from water. Tian X; Zhou S; Zhang Z; He X; Yu M; Lin D Environ Sci Technol; 2010 Nov; 44(21):8144-9. PubMed ID: 20919734 [TBL] [Abstract][Full Text] [Related]
17. Suspending multi-walled carbon nanotubes by humic acids from a peat soil. Zhou X; Shu L; Zhao H; Guo X; Wang X; Tao S; Xing B Environ Sci Technol; 2012 Apr; 46(7):3891-7. PubMed ID: 22376064 [TBL] [Abstract][Full Text] [Related]
18. Effects of multi-walled carbon nanotubes on pyrene adsorption and desorption in soils: The role of soil constituents. Zhang W; Lu Y; Sun H; Zhang Y; Zhou M; Song Q; Gao Y Chemosphere; 2019 Apr; 221():203-211. PubMed ID: 30640002 [TBL] [Abstract][Full Text] [Related]
19. Interactions between carbon nanotubes and sulfonamide antibiotics in aqueous solutions under various physicochemical conditions. Tian Y; Gao B; Chen H; Wang Y; Li H J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(9):1136-44. PubMed ID: 23573934 [TBL] [Abstract][Full Text] [Related]
20. Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions. Lin D; Xing B Environ Sci Technol; 2008 Aug; 42(16):5917-23. PubMed ID: 18767645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]