These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22656071)

  • 1. Gel-based self-propelling particles get programmed to dance.
    Sharma R; Chang ST; Velev OD
    Langmuir; 2012 Jul; 28(26):10128-35. PubMed ID: 22656071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remotely powered self-propelling particles and micropumps based on miniature diodes.
    Chang ST; Paunov VN; Petsev DN; Velev OD
    Nat Mater; 2007 Mar; 6(3):235-40. PubMed ID: 17293850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directional and path-finding motion of polymer hydrogels driven by liquid mixing.
    Wang Y; Liu X; Li X; Wu J; Long Y; Zhao N; Xu J
    Langmuir; 2012 Aug; 28(31):11276-80. PubMed ID: 22827257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Facile Interfacial Self-Assembly of Crystalline Colloidal Monolayers by Tension Gradient.
    Feng D; Weng D; Wang J
    Micromachines (Basel); 2018 Jun; 9(6):. PubMed ID: 30424230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Marangoni flow of Ag nanoparticles from the fluid-fluid interface.
    Johnson DD; Kang B; Vigorita JL; Amram A; Spain EM
    J Phys Chem A; 2008 Oct; 112(39):9318-23. PubMed ID: 18781724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaporation-induced particle microseparations inside droplets floating on a chip.
    Chang ST; Velev OD
    Langmuir; 2006 Feb; 22(4):1459-68. PubMed ID: 16460062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic self-assembly in ensembles of camphor boats.
    Soh S; Bishop KJ; Grzybowski BA
    J Phys Chem B; 2008 Sep; 112(35):10848-53. PubMed ID: 18686988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves.
    Wang Z; Zhe J
    Lab Chip; 2011 Apr; 11(7):1280-5. PubMed ID: 21301739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics due to combined buoyancy- and Marangoni-driven convective flows around autocatalytic fronts.
    Budroni MA; Rongy L; De Wit A
    Phys Chem Chem Phys; 2012 Nov; 14(42):14619-29. PubMed ID: 23032937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-Operated Dual-Mode Propulsion at the Liquid/Air Interface Using Flexible, Superhydrophobic, and Thermally Stable Photothermal Paper.
    Yang RL; Zhu YJ; Qin DD; Xiong ZC
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1339-1347. PubMed ID: 31880902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Helical paths, gravitaxis, and separation phenomena for mass-anisotropic self-propelling colloids: Experiment versus theory.
    Campbell AI; Wittkowski R; Ten Hagen B; Löwen H; Ebbens SJ
    J Chem Phys; 2017 Aug; 147(8):084905. PubMed ID: 28863518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motion modes of two self-propelled camphor boats on the surface of a surfactant-containing solution.
    Karasawa Y; Nomoto T; Chiari L; Toyota T; Fujinami M
    J Colloid Interface Sci; 2018 Feb; 511():184-192. PubMed ID: 29024858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle separation by a moving air-liquid interface in a microchannel.
    Wang F; Chon CH; Li D
    J Colloid Interface Sci; 2010 Dec; 352(2):580-4. PubMed ID: 20851407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant effect on the buoyancy-driven motion of bubbles and drops in a tube.
    Almatroushi E; Borhan A
    Ann N Y Acad Sci; 2004 Nov; 1027():330-41. PubMed ID: 15644366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly and rheology of ellipsoidal particles at interfaces.
    Madivala B; Fransaer J; Vermant J
    Langmuir; 2009 Mar; 25(5):2718-28. PubMed ID: 19437693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chasing drops: following escaper and pursuer drop couple system.
    Bahadur P; Yadav PS; Chaurasia K; Leh A; Tadmor R
    J Colloid Interface Sci; 2009 Apr; 332(2):455-60. PubMed ID: 19181327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical model of volatile release in mouth from the dispersion of gelled emulsion particles.
    Lian G; Malone ME; Homan JE; Norton IT
    J Control Release; 2004 Jul; 98(1):139-55. PubMed ID: 15245896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-driven gel conveyer: effect of interactions between loaded cargo and self-oscillating gel surface.
    Murase Y; Takeshima R; Yoshida R
    Macromol Biosci; 2011 Dec; 11(12):1713-21. PubMed ID: 21919207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From diffusive mass transfer in Stokes flow to low Reynolds number Marangoni boats.
    Ender H; Kierfeld J
    Eur Phys J E Soft Matter; 2021 Feb; 44(1):4. PubMed ID: 33580288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.