BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 22656860)

  • 41. Engineering controllable protein degradation.
    McGinness KE; Baker TA; Sauer RT
    Mol Cell; 2006 Jun; 22(5):701-7. PubMed ID: 16762842
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The AAA+ protease ClpXP can easily degrade a 3
    Sivertsson EM; Jackson SE; Itzhaki LS
    Sci Rep; 2019 Feb; 9(1):2421. PubMed ID: 30787316
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure of phosphorylated-like RssB, the adaptor delivering σ
    Brugger C; Schwartz J; Novick S; Tong S; Hoskins JR; Majdalani N; Kim R; Filipovski M; Wickner S; Gottesman S; Griffin PR; Deaconescu AM
    J Biol Chem; 2023 Dec; 299(12):105440. PubMed ID: 37949227
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The crystal structure of the global anaerobic transcriptional regulator FNR explains its extremely fine-tuned monomer-dimer equilibrium.
    Volbeda A; Darnault C; Renoux O; Nicolet Y; Fontecilla-Camps JC
    Sci Adv; 2015 Dec; 1(11):e1501086. PubMed ID: 26665177
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Geobacillus thermodenitrificans YjbH recognizes the C-terminal end of Bacillus subtilis Spx to accelerate Spx proteolysis by ClpXP.
    Chan CM; Garg S; Lin AA; Zuber P
    Microbiology (Reading); 2012 May; 158(Pt 5):1268-1278. PubMed ID: 22343351
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The YjbH protein of Bacillus subtilis enhances ClpXP-catalyzed proteolysis of Spx.
    Garg SK; Kommineni S; Henslee L; Zhang Y; Zuber P
    J Bacteriol; 2009 Feb; 191(4):1268-77. PubMed ID: 19074380
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural Basis for YjbH Adaptor-Mediated Recognition of Transcription Factor Spx.
    Awad W; Al-Eryani Y; Ekström S; Logan DT; von Wachenfeldt C
    Structure; 2019 Jun; 27(6):923-936.e6. PubMed ID: 30982633
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Knots can impair protein degradation by ATP-dependent proteases.
    San Martín Á; Rodriguez-Aliaga P; Molina JA; Martin A; Bustamante C; Baez M
    Proc Natl Acad Sci U S A; 2017 Sep; 114(37):9864-9869. PubMed ID: 28847957
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identifying the Protein Interactions of the Cytosolic Iron-Sulfur Cluster Targeting Complex Essential for Its Assembly and Recognition of Apo-Targets.
    Vo A; Fleischman NM; Froehlich MJ; Lee CY; Cosman JA; Glynn CA; Hassan ZO; Perlstein DL
    Biochemistry; 2018 Apr; 57(16):2349-2358. PubMed ID: 28539047
    [TBL] [Abstract][Full Text] [Related]  

  • 50. FNR-Dependent RmpA and RmpA2 Regulation of Capsule Polysaccharide Biosynthesis in
    Lin TH; Wu CC; Kuo JT; Chu HF; Lee DY; Lin CT
    Front Microbiol; 2019; 10():2436. PubMed ID: 31736888
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single-molecule peptide fingerprinting.
    van Ginkel J; Filius M; Szczepaniak M; Tulinski P; Meyer AS; Joo C
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3338-3343. PubMed ID: 29531063
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cargo competition for a dimerization interface restricts and stabilizes a bacterial protease adaptor.
    Kuhlmann NJ; Doxsey D; Chien P
    Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33875581
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Discovery of antibacterial cyclic peptides that inhibit the ClpXP protease.
    Cheng L; Naumann TA; Horswill AR; Hong SJ; Venters BJ; Tomsho JW; Benkovic SJ; Keiler KC
    Protein Sci; 2007 Aug; 16(8):1535-42. PubMed ID: 17600141
    [TBL] [Abstract][Full Text] [Related]  

  • 54. X-ray snapshots of possible intermediates in the time course of synthesis and degradation of protein-bound Fe4S4 clusters.
    Nicolet Y; Rohac R; Martin L; Fontecilla-Camps JC
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7188-92. PubMed ID: 23596207
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanically Watching the ClpXP Proteolytic Machinery.
    Cordova JC; Olivares AO; Lang MJ
    Methods Mol Biol; 2017; 1486():317-341. PubMed ID: 27844434
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydantoin analogs inhibit the fully assembled ClpXP protease without affecting the individual peptidase and chaperone domains.
    Fetzer C; Korotkov VS; Sieber SA
    Org Biomol Chem; 2019 Aug; 17(30):7124-7127. PubMed ID: 31313793
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tailored Peptide Phenyl Esters Block ClpXP Proteolysis by an Unusual Breakdown into a Heptamer-Hexamer Assembly.
    Lakemeyer M; Bertosin E; Möller F; Balogh D; Strasser R; Dietz H; Sieber SA
    Angew Chem Int Ed Engl; 2019 May; 58(21):7127-7132. PubMed ID: 30829431
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chance, destiny, and the inner workings of ClpXP.
    Russell R; Matouschek A
    Cell; 2014 Jul; 158(3):479-80. PubMed ID: 25083864
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anti-adaptors use distinct modes of binding to inhibit the RssB-dependent turnover of RpoS (σ(S)) by ClpXP.
    Micevski D; Zammit JE; Truscott KN; Dougan DA
    Front Mol Biosci; 2015; 2():15. PubMed ID: 25988182
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of in-line anoxic small-angle X-ray scattering and structural characterization of an oxygen-sensing transcriptional regulator.
    Illava G; Gillilan R; Ando N
    bioRxiv; 2023 May; ():. PubMed ID: 37292723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.