These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 22658299)
1. The influence of the organic modifier in hydro-organic mobile phase on separation selectivity of steroid hormones separation using cholesterol-bonded stationary phases. Bocian S; Soukup J; Matyska M; Pesek J; Jandera P; Buszewski B J Chromatogr A; 2012 Jul; 1245():90-7. PubMed ID: 22658299 [TBL] [Abstract][Full Text] [Related]
2. Study of solvation processes on cholesterol bonded phases. Buszewski B; Bocian S; Matyska M; Pesek J J Chromatogr A; 2011 Jan; 1218(3):441-8. PubMed ID: 21159345 [TBL] [Abstract][Full Text] [Related]
3. Study of the retention and selectivity of cholesterol bonded phases with different linkage spacers. Bocian S; Matyska M; Pesek J; Buszewski B J Chromatogr A; 2010 Oct; 1217(44):6891-7. PubMed ID: 20863509 [TBL] [Abstract][Full Text] [Related]
4. Hydrophilic interaction chromatography in nonaqueous elution mode for separation of hydrophilic analytes on silica-based packings with noncharged polar bondings. Bicker W; Wu J; Lämmerhofer M; Lindner W J Sep Sci; 2008 Sep; 31(16-17):2971-87. PubMed ID: 18785146 [TBL] [Abstract][Full Text] [Related]
5. Study of the selectivity, retention mechanisms and performance of alternative silica-based stationary phases for separation of ionised solutes in hydrophilic interaction chromatography. McCalley DV J Chromatogr A; 2010 May; 1217(20):3408-17. PubMed ID: 20362994 [TBL] [Abstract][Full Text] [Related]
6. Modeling solvation on the chemically modified silica surfaces. Buszewski B; Bocian S; Nowaczyk A J Sep Sci; 2010 Jul; 33(14):2060-8. PubMed ID: 20572263 [TBL] [Abstract][Full Text] [Related]
7. Comparison of four cholesterol-based stationary phases for the separation of steroid hormones. Soukup J; Bocian S; Jandera P; Buszewski B J Sep Sci; 2014 Feb; 37(4):345-51. PubMed ID: 24339351 [TBL] [Abstract][Full Text] [Related]
8. Phenyl-bonded stationary phases--the influence of polar functional groups on retention and selectivity in reversed-phase liquid chromatography. Bocian S; Buszewski B J Sep Sci; 2014 Dec; 37(23):3435-42. PubMed ID: 25231379 [TBL] [Abstract][Full Text] [Related]
9. Novel reversed-phase high-performance liquid chromatography stationary phase with oligo(ethylene glycol) "click" to silica. Guo Z; Liu Y; Xu J; Xu Q; Xue X; Zhang F; Ke Y; Liang X; Lei A J Chromatogr A; 2008 May; 1191(1-2):78-82. PubMed ID: 18082752 [TBL] [Abstract][Full Text] [Related]
10. Characterization of new N,O-dialkyl phosphoramidate-bonded stationary phases for reversed-phase HPLC - retention and selectivity. Bocian S; Paca M; Buszewski B Analyst; 2013 Sep; 138(18):5221-9. PubMed ID: 23853777 [TBL] [Abstract][Full Text] [Related]
11. Selectivity of calixarene-bonded silica phases in HPLC: Description of special characteristics with a multiple term linear equation at different methanol concentrations. Schneider C; Jira T J Sep Sci; 2010 Oct; 33(19):2943-55. PubMed ID: 20812230 [TBL] [Abstract][Full Text] [Related]
12. Influence of stationary phase solvation on shape selectivity and retention in reversed-phase liquid chromatography. Limsavarn L; Dorsey JG J Chromatogr A; 2006 Jan; 1102(1-2):143-53. PubMed ID: 16289120 [TBL] [Abstract][Full Text] [Related]
13. Excess isotherms as a new way for characterization of the columns for reversed-phase liquid chromatography. Buszewski B; Bocian S; Felinger A J Chromatogr A; 2008 May; 1191(1-2):72-7. PubMed ID: 18076889 [TBL] [Abstract][Full Text] [Related]
14. Optimization of the separation of some Chelidonium maius L. alkaloids by reversed phase high-performance liquid chromatography using cyanopropyl bonded stationary phase. Petruczynik A; Gadzikowska M; Waksmundzka-Hajnos M Acta Pol Pharm; 2002; 59(1):61-4. PubMed ID: 12026115 [TBL] [Abstract][Full Text] [Related]
15. Retention process in reversed phase TLC systems with polar bonded stationary phases. Zapała W; Waksmundzka-Hajnos M J Sep Sci; 2005 Apr; 28(6):566-74. PubMed ID: 15881087 [TBL] [Abstract][Full Text] [Related]
16. Time-dependent column performance of cholesterol-based stationary phases for HPLC by LC characterization and solid-state NMR spectroscopy. Yeman H; Nicholson TM; Friebolin V; Steinhauser L; Matyska MT; Pesek JJ; Albert K J Sep Sci; 2012 Jul; 35(13):1582-8. PubMed ID: 22761135 [TBL] [Abstract][Full Text] [Related]
17. Hydrosilated silica-based columns: the effects of mobile phase and temperature on dual hydrophilic-reversed-phase separation mechanism of phenolic acids. Soukup J; Jandera P J Chromatogr A; 2012 Mar; 1228():125-34. PubMed ID: 21782183 [TBL] [Abstract][Full Text] [Related]
18. Two-dimensional reversed-phase liquid chromatography using two monolithic silica C18 columns and different mobile phase modifiers in the two dimensions. Ikegami T; Hara T; Kimura H; Kobayashi H; Hosoya K; Cabrera K; Tanaka N J Chromatogr A; 2006 Feb; 1106(1-2):112-7. PubMed ID: 16343520 [TBL] [Abstract][Full Text] [Related]
19. Retention pattern profiling of fungal metabolites on mixed-mode reversed-phase/weak anion exchange stationary phases in comparison to reversed-phase and weak anion exchange separation materials by liquid chromatography-electrospray ionisation-tandem mass spectrometry. Apfelthaler E; Bicker W; Lämmerhofer M; Sulyok M; Krska R; Lindner W; Schuhmacher R J Chromatogr A; 2008 May; 1191(1-2):171-81. PubMed ID: 18199445 [TBL] [Abstract][Full Text] [Related]
20. Secondary isotope effects in liquid chromatography behaviour of 2H and 3H labelled solutes and solvents. Valleix A; Carrat S; Caussignac C; Léonce E; Tchapla A J Chromatogr A; 2006 May; 1116(1-2):109-26. PubMed ID: 16631181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]