These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 22658743)

  • 41. Accumulation of explosives in hair--Part 3: Binding site study.
    Oxley JC; Smith JL; Kirschenbaum LJ; Marimiganti S; Efremenko I; Zach R; Zeiri Y
    J Forensic Sci; 2012 May; 57(3):623-35. PubMed ID: 22235760
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Coupled reversed-phase and ion chromatographic system for the simultaneous identification of inorganic and organic explosives.
    Tyrrell E; Dicinoski GW; Hilder EF; Shellie RA; Breadmore MC; Pohl CA; Haddad PR
    J Chromatogr A; 2011 May; 1218(20):3007-12. PubMed ID: 21481882
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantitative Analysis of Hexahydro-1,3,5-trinitro-1,3,5, Triazine/Pentaerythritol Tetranitrate (RDX-PETN) Mixtures by Terahertz Time Domain Spectroscopy.
    Sleiman JB; Bousquet B; Palka N; Mounaix P
    Appl Spectrosc; 2015 Dec; 69(12):1464-71. PubMed ID: 26556760
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dissolution of microscale energetic residues in saturated porous media: visualization and quantification at the pore-scale by spectral confocal microscopy.
    Wang C; Lazouskaya V; Fuller ME; Caplan JL; Schaefer CE; Jin Y
    Environ Sci Technol; 2011 Oct; 45(19):8352-8. PubMed ID: 21861475
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Explosive biodegradation in soil slurry batch reactors amended with exogenous microorganisms.
    Shen CF; Hawari JA; Paquet L; Ampleman G; Thiboutot S; Guiot SR
    Water Sci Technol; 2001; 43(3):291-8. PubMed ID: 11381919
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced forensic DNA recovery with appropriate swabs and optimized swabbing technique.
    Hedman J; Akel Y; Jansson L; Hedell R; Wallmark N; Forsberg C; Ansell R
    Forensic Sci Int Genet; 2021 Jul; 53():102491. PubMed ID: 33774569
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Detection of explosives in hair using ion mobility spectrometry.
    Oxley JC; Smith JL; Kirschenbaum LJ; Marimganti S; Vadlamannati S
    J Forensic Sci; 2008 May; 53(3):690-3. PubMed ID: 18471216
    [TBL] [Abstract][Full Text] [Related]  

  • 48. RDX and TNT residues from live-fire and blow-in-place detonations.
    Hewitt AD; Jenkins TF; Walsh ME; Walsh MR; Taylor S
    Chemosphere; 2005 Nov; 61(6):888-94. PubMed ID: 15964048
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of gene expression in poplar trees (Populus deltoides x nigra, DN34) exposed to the toxic explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX).
    Tanaka S; Brentner LB; Merchie KM; Schnoor JL; Yoon JM; Van Aken B
    Int J Phytoremediation; 2007; 9(1):15-30. PubMed ID: 18246712
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In-situ detection of single particles of explosive on clothing with confocal Raman microscopy.
    Ali EM; Edwards HG; Scowen IJ
    Talanta; 2009 May; 78(3):1201-3. PubMed ID: 19269494
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Detection of explosives by positive corona discharge ion mobility spectrometry.
    Tabrizchi M; Ilbeigi V
    J Hazard Mater; 2010 Apr; 176(1-3):692-6. PubMed ID: 20004055
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of high explosives using single-particle aerosol mass spectrometry.
    Martin AN; Farquar GR; Gard EE; Frank M; Fergenson DP
    Anal Chem; 2007 Mar; 79(5):1918-25. PubMed ID: 17249636
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative toxicokinetics of explosive compounds in sheepshead minnows.
    Lotufo GR; Lydy MJ
    Arch Environ Contam Toxicol; 2005 Aug; 49(2):206-14. PubMed ID: 16059748
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sensors Using the Molecular Dynamics of Explosives in Carbon Nanotubes Under External Uniform Electric Fields.
    Cruz JN; Moraes ES; Pantoja RP; Pereira TSS; Mota GVS; Neto AMJC
    J Nanosci Nanotechnol; 2019 Sep; 19(9):5687-5691. PubMed ID: 30961725
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surface Persistence of Trace Level Deposits of Highly Energetic Materials.
    Pacheco-Londoño LC; Ruiz-Caballero JL; Ramírez-Cedeño ML; Infante-Castillo R; Gálan-Freyle NJ; Hernández-Rivera SP
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31561514
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Secondary ion mass spectrometry of powdered explosive compounds for forensic evidence analysis.
    Téllez H; Vadillo JM; Laserna JJ
    Rapid Commun Mass Spectrom; 2012 May; 26(10):1203-7. PubMed ID: 22499195
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Use of swabs without transport media for the Gen-Probe Group A Strep Direct Test.
    Bourbeau PP; Heiter BJ
    J Clin Microbiol; 2004 Jul; 42(7):3207-11. PubMed ID: 15243083
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A NIST standard reference material (SRM) to support the detection of trace explosives.
    MacCrehan WA
    Anal Chem; 2009 Sep; 81(17):7189-96. PubMed ID: 19637901
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Desorption electrospray ionization of explosives on surfaces: sensitivity and selectivity enhancement by reactive desorption electrospray ionization.
    Cotte-Rodríguez I; Takáts Z; Talaty N; Chen H; Cooks RG
    Anal Chem; 2005 Nov; 77(21):6755-64. PubMed ID: 16255571
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bioaccumulation of explosive compounds in the marine mussel, Mytilus galloprovincialis.
    Rosen G; Lotufo GR
    Ecotoxicol Environ Saf; 2007 Oct; 68(2):237-45. PubMed ID: 17629944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.