These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 22658743)

  • 61. Toxicity of explosive compounds to the marine mussel, Mytilus galloprovincialis, in aqueous exposures.
    Rosen G; Lotufo GR
    Ecotoxicol Environ Saf; 2007 Oct; 68(2):228-36. PubMed ID: 17475328
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Recovery efficiencies of anthrax spores and ricin from nonporous or nonabsorbent and porous or absorbent surfaces by a variety of sampling methods*.
    Frawley DA; Samaan MN; Bull RL; Robertson JM; Mateczun AJ; Turnbull PC
    J Forensic Sci; 2008 Sep; 53(5):1102-7. PubMed ID: 18637873
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Localization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) in poplar and switchgrass plants using phosphor imager autoradiography.
    Brentner LB; Mukherji ST; Walsh SA; Schnoor JL
    Environ Pollut; 2010 Feb; 158(2):470-5. PubMed ID: 19782446
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sampling household surfaces for pesticide residues: comparison between a press sampler and solvent-moistened wipes.
    Bernard CE; Berry MR; Wymer LJ; Melnyk LJ
    Sci Total Environ; 2008 Jan; 389(2-3):514-21. PubMed ID: 17900665
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The Chemical Compatibility and Adhesion of Energetic Materials with Several Polymers and Binders: An Experimental Study.
    Nguyen TT; Phan DN; Nguyen DC; Do VT; Bach LG
    Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961321
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Electrolytic transformation of ordinance related compounds (ORCs) in groundwater: laboratory mass balance studies.
    Wani AH; O'Neal BR; Gilbert DM; Gent DB; Davis JL
    Chemosphere; 2006 Feb; 62(5):689-98. PubMed ID: 16081140
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Selective sampling and laser-induced breakdown spectroscopy (LIBS) analysis of organic explosive residues on polymer surfaces.
    Fernández-Bravo Á; Lucena P; Laserna JJ
    Appl Spectrosc; 2012 Oct; 66(10):1197-203. PubMed ID: 23031703
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Sampling of explosive residues: The use of a gelatine-based medium for the recovery of ammonium nitrate.
    Amaral MA; Yasin S; Gibson AP; Morgan RM
    Sci Justice; 2020 Nov; 60(6):531-537. PubMed ID: 33077036
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fate of RDX and TNT in agronomic plants.
    Vila M; Lorber-Pascal S; Laurent F
    Environ Pollut; 2007 Jul; 148(1):148-54. PubMed ID: 17254682
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Age dependent acute oral toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and two anaerobic N-nitroso metabolites in deer mice (Peromyscus maniculatus).
    Smith JN; Liu J; Espino MA; Cobb GP
    Chemosphere; 2007 May; 67(11):2267-73. PubMed ID: 17275885
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Dissolution and transport of TNT, RDX, and composition B in saturated soil columns.
    Dontsova KM; Yost SL; Simunek J; Pennington JC; Williford CW
    J Environ Qual; 2006; 35(6):2043-54. PubMed ID: 17071873
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Degradation of explosives-related compounds using nickel catalysts.
    Fuller ME; Schaefer CE; Lowey JM
    Chemosphere; 2007 Mar; 67(3):419-27. PubMed ID: 17109928
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Deep ultraviolet resonance Raman excitation enables explosives detection.
    Tuschel DD; Mikhonin AV; Lemoff BE; Asher SA
    Appl Spectrosc; 2010 Apr; 64(4):425-32. PubMed ID: 20412628
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Spectrophotometric determination of cyclotrimethylenetrinitramine (RDX) in explosive mixtures and residues with the Berthelot reaction.
    Uzer A; Erçağ E; Apak R
    Anal Chim Acta; 2008 Mar; 612(1):53-64. PubMed ID: 18331858
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Sorption of high explosives to water-dispersible clay: influence of organic carbon, aluminosilicate clay, and extractable iron.
    Dontsova KM; Hayes C; Pennington JC; Porter B
    J Environ Qual; 2009; 38(4):1458-65. PubMed ID: 19465721
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Investigating the fate of nitroaromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and pristine soils.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA
    J Environ Qual; 2009; 38(6):2285-94. PubMed ID: 19875785
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Dissolution kinetics of sub-millimeter Composition B detonation residues: role of particle size and particle wetting.
    Fuller ME; Schaefer CE; Andaya C; Lazouskaya V; Fallis S; Wang C; Jin Y
    Chemosphere; 2012 Jul; 88(5):591-7. PubMed ID: 22483856
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument.
    Carter JC; Angel SM; Lawrence-Snyder M; Scaffidi J; Whipple RE; Reynolds JG
    Appl Spectrosc; 2005 Jun; 59(6):769-75. PubMed ID: 16053543
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Optimizing accu time-of-flight/direct analysis in real time for explosive residue analysis.
    Swider JR
    J Forensic Sci; 2013 Nov; 58(6):1601-6. PubMed ID: 24117693
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Simple multispectral imaging approach for determining the transfer of explosive residues in consecutive fingerprints.
    Lees H; Zapata F; Vaher M; García-Ruiz C
    Talanta; 2018 Jul; 184():437-445. PubMed ID: 29674066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.