These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Thermoelastic Processes by a Continuous Heat Source Line in an Infinite Solid via Moore-Gibson-Thompson Thermoelasticity. Abouelregal AE; Ahmed IE; Nasr ME; Khalil KM; Zakria A; Mohammed FA Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33050102 [TBL] [Abstract][Full Text] [Related]
4. Circumferential thermoelastic waves in orthotropic cylindrical curved plates without energy dissipation. Jiangong Y; Bin W; Cunfu H Ultrasonics; 2010 Mar; 50(3):416-23. PubMed ID: 19857886 [TBL] [Abstract][Full Text] [Related]
5. Nonlinear Rayleigh wave propagation in thermoelastic media in dual-phase-lag. Youssef AA; Amein NK; Abdelrahman NS; Abou-Dina MS; Ghaleb AF Sci Rep; 2022 Dec; 12(1):21209. PubMed ID: 36482177 [TBL] [Abstract][Full Text] [Related]
6. On a two-dimensional model of generalized thermoelasticity with application. Ahmed EAA; El-Dhaba AR; Abou-Dina MS; Ghaleb AF Sci Rep; 2022 Sep; 12(1):15562. PubMed ID: 36114264 [TBL] [Abstract][Full Text] [Related]
8. Experimental and theoretical study of acoustic waves generated by a laser line pulse in an optically absorptive isotropic cylinder. Ségur D; Shuvalov AL; Audoin B; Pan YD J Acoust Soc Am; 2010 Jan; 127(1):181-5. PubMed ID: 20058962 [TBL] [Abstract][Full Text] [Related]
9. Fractional Order Two-Temperature Dual-Phase-Lag Thermoelasticity with Variable Thermal Conductivity. Mondal S; Mallik SH; Kanoria M Int Sch Res Notices; 2014; 2014():646049. PubMed ID: 27419210 [TBL] [Abstract][Full Text] [Related]
10. Acoustic waves generated by a laser point pulse in a transversely isotropic cylinder. Pan Y; Perton M; Audoin B; Rossignol C J Acoust Soc Am; 2006 Jan; 119(1):243-50. PubMed ID: 16454280 [TBL] [Abstract][Full Text] [Related]
11. Influence of water saturation on propagation of elastic waves in transversely isotropic nearly saturated soil. Li BZ; Cai YQ J Zhejiang Univ Sci; 2003; 4(6):694-701. PubMed ID: 14566985 [TBL] [Abstract][Full Text] [Related]
13. Modeling of three-dimensional Lamb wave propagation excited by laser pulses. Liu W; Hong JW Ultrasonics; 2015 Jan; 55():113-22. PubMed ID: 25109827 [TBL] [Abstract][Full Text] [Related]
14. Effect of laser beam incidence angle on the thermoelastic generation in semi-transparent materials. Raetz S; Dehoux T; Audoin B J Acoust Soc Am; 2011 Dec; 130(6):3691-7. PubMed ID: 22225025 [TBL] [Abstract][Full Text] [Related]
15. Finite element modelling strategy for determining directivity of thermoelastically generated laser ultrasound. Tu XL; Zhang J; Gambaruto AM; Wilcox PD Ultrasonics; 2024 Mar; 138():107252. PubMed ID: 38277767 [TBL] [Abstract][Full Text] [Related]
16. Interaction of a scanning laser-generated ultrasonic line source with a surface-breaking flaw. Sohn Y; Krishnaswamy S J Acoust Soc Am; 2004 Jan; 115(1):172-81. PubMed ID: 14759008 [TBL] [Abstract][Full Text] [Related]
17. The influence of heterogeneity and initial stress on the propagation of Love-type wave in a transversely isotropic layer subjected to rotation. Bayones FS; Hussein NS; Abd-Alla AM; Alharbi AM Sci Prog; 2021; 104(3):368504211041496. PubMed ID: 34549655 [TBL] [Abstract][Full Text] [Related]
18. Experimental and numerical study of the excitability of zero group velocity Lamb waves by laser-ultrasound. Grünsteidl CM; Veres IA; Murray TW J Acoust Soc Am; 2015 Jul; 138(1):242-50. PubMed ID: 26233023 [TBL] [Abstract][Full Text] [Related]
19. Investigation of generalized piezoelectric-thermoelastic problem with nonlocal effect and temperature-dependent properties. Li D; He T Heliyon; 2018 Oct; 4(10):e00860. PubMed ID: 30364645 [TBL] [Abstract][Full Text] [Related]