BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22658961)

  • 21. Probing heteronuclear (15)N-(17)O and (13)C-(17)O connectivities and proximities by solid-state NMR spectroscopy.
    Hung I; Uldry AC; Becker-Baldus J; Webber AL; Wong A; Smith ME; Joyce SA; Yates JR; Pickard CJ; Dupree R; Brown SP
    J Am Chem Soc; 2009 Feb; 131(5):1820-34. PubMed ID: 19138069
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast quantitative 1H-13C two-dimensional NMR with very high precision.
    Martineau E; Akoka S; Boisseau R; Delanoue B; Giraudeau P
    Anal Chem; 2013 May; 85(9):4777-83. PubMed ID: 23581575
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast and accurate quantitative metabolic profiling of body fluids by nonlinear sampling of 1H–13C two-dimensional nuclear magnetic resonance spectroscopy.
    Rai RK; Sinha N
    Anal Chem; 2012 Nov; 84(22):10005-11. PubMed ID: 23061661
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Homo- and heteronuclear two-dimensional covariance solid-state NMR spectroscopy with a dual-receiver system.
    Takeda K; Kusakabe Y; Noda Y; Fukuchi M; Takegoshi K
    Phys Chem Chem Phys; 2012 Jul; 14(27):9715-21. PubMed ID: 22684522
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isotopomer measurement techniques in metabolic flux analysis I: nuclear magnetic resonance.
    Truong QX; Yoon JM; Shanks JV
    Methods Mol Biol; 2014; 1083():65-83. PubMed ID: 24218211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solid-state NMR spectroscopy method for determination of the backbone torsion angle psi in peptides with isolated uniformly labeled residues.
    Chan JC; Tycko R
    J Am Chem Soc; 2003 Oct; 125(39):11828-9. PubMed ID: 14505399
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amino Acid Selective
    Sugiki T; Furuita K; Fujiwara T; Kojima C
    Biochemistry; 2018 Jul; 57(26):3576-3589. PubMed ID: 29924600
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Constraints on supramolecular structure in amyloid fibrils from two-dimensional solid-state NMR spectroscopy with uniform isotopic labeling.
    Tycko R; Ishii Y
    J Am Chem Soc; 2003 Jun; 125(22):6606-7. PubMed ID: 12769550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MetaboQuant: a tool combining individual peak calibration and outlier detection for accurate metabolite quantification in 1D (1)H and (1)H-(13)C HSQC NMR spectra.
    Klein MS; Oefner PJ; Gronwald W
    Biotechniques; 2013 May; 54(5):251-6. PubMed ID: 23662895
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitivity enhancement in 1D heteronuclear NMR spectroscopy via single-scan inverse experiments.
    Mishkovsky M; Frydman L
    Chemphyschem; 2004 Jun; 5(6):779-86. PubMed ID: 15253304
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of the application of different window functions and projection methods on processing of 1H J-resolved nuclear magnetic resonance spectra for metabolomics.
    Tiziani S; Lodi A; Ludwig C; Parsons HM; Viant MR
    Anal Chim Acta; 2008 Mar; 610(1):80-8. PubMed ID: 18267143
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantification of ¹³C enrichments and isotopomer abundances for metabolic flux analysis using 1D NMR spectroscopy.
    Masakapalli SK; Ratcliffe RG; Williams TC
    Methods Mol Biol; 2014; 1090():73-86. PubMed ID: 24222410
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Urinary metabolite quantification employing 2D NMR spectroscopy.
    Gronwald W; Klein MS; Kaspar H; Fagerer SR; Nürnberger N; Dettmer K; Bertsch T; Oefner PJ
    Anal Chem; 2008 Dec; 80(23):9288-97. PubMed ID: 19551947
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of isotope discrimination in (13)C-based metabolic flux analysis.
    Feng X; Tang YJ
    Anal Biochem; 2011 Oct; 417(2):295-7. PubMed ID: 21745456
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid and novel discrimination and quantification of oleanolic and ursolic acids in complex plant extracts using two-dimensional nuclear magnetic resonance spectroscopy-Comparison with HPLC methods.
    Kontogianni VG; Exarchou V; Troganis A; Gerothanassis IP
    Anal Chim Acta; 2009 Mar; 635(2):188-95. PubMed ID: 19216877
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined analysis of C-18 unsaturated fatty acids using natural abundance deuterium 2D NMR spectroscopy in chiral oriented solvents.
    Lesot P; Baillif V; Billault I
    Anal Chem; 2008 Apr; 80(8):2963-72. PubMed ID: 18327921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nuclear magnetic resonance methods for metabolic fluxomics.
    Nargund S; Joffe ME; Tran D; Tugarinov V; Sriram G
    Methods Mol Biol; 2013; 985():335-51. PubMed ID: 23417811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of methyl 13C-15N dipolar couplings in peptides and proteins by three-dimensional and four-dimensional magic-angle spinning solid-state NMR spectroscopy.
    Helmus JJ; Nadaud PS; Höfer N; Jaroniec CP
    J Chem Phys; 2008 Feb; 128(5):052314. PubMed ID: 18266431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amino acid-type edited NMR experiments for methyl-methyl distance measurement in 13C-labeled proteins.
    Van Melckebeke H; Simorre JP; Brutscher B
    J Am Chem Soc; 2004 Aug; 126(31):9584-91. PubMed ID: 15291562
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell-free synthesis of 15N-labeled proteins for NMR studies.
    Ozawa K; Dixon NE; Otting G
    IUBMB Life; 2005 Sep; 57(9):615-22. PubMed ID: 16203680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.