These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Model-free fMRI group analysis using FENICA. Schöpf V; Windischberger C; Robinson S; Kasess CH; Fischmeister FP; Lanzenberger R; Albrecht J; Kleemann AM; Kopietz R; Wiesmann M; Moser E Neuroimage; 2011 Mar; 55(1):185-93. PubMed ID: 21078400 [TBL] [Abstract][Full Text] [Related]
4. SACICA: a sparse approximation coefficient-based ICA model for functional magnetic resonance imaging data analysis. Wang N; Zeng W; Chen L J Neurosci Methods; 2013 May; 216(1):49-61. PubMed ID: 23563324 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of spatio-temporal decomposition techniques for group analysis of fMRI resting state data sets. Afshin-Pour B; Grady C; Strother S Neuroimage; 2014 Feb; 87():363-82. PubMed ID: 24201012 [TBL] [Abstract][Full Text] [Related]
6. The non-separability of physiologic noise in functional connectivity MRI with spatial ICA at 3T. Beall EB; Lowe MJ J Neurosci Methods; 2010 Aug; 191(2):263-76. PubMed ID: 20600313 [TBL] [Abstract][Full Text] [Related]
7. A group model for stable multi-subject ICA on fMRI datasets. Varoquaux G; Sadaghiani S; Pinel P; Kleinschmidt A; Poline JB; Thirion B Neuroimage; 2010 May; 51(1):288-99. PubMed ID: 20153834 [TBL] [Abstract][Full Text] [Related]
8. Cortex-based independent component analysis of fMRI time series. Formisano E; Esposito F; Di Salle F; Goebel R Magn Reson Imaging; 2004 Dec; 22(10):1493-504. PubMed ID: 15707799 [TBL] [Abstract][Full Text] [Related]
9. Exploiting the potential of three dimensional spatial wavelet analysis to explore nesting of temporal oscillations and spatial variance in simultaneous EEG-fMRI data. Schultze-Kraft M; Becker R; Breakspear M; Ritter P Prog Biophys Mol Biol; 2011 Mar; 105(1-2):67-79. PubMed ID: 21094179 [TBL] [Abstract][Full Text] [Related]
10. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks. Yuan H; Zotev V; Phillips R; Drevets WC; Bodurka J Neuroimage; 2012 May; 60(4):2062-72. PubMed ID: 22381593 [TBL] [Abstract][Full Text] [Related]
11. Subspace-based Identification Algorithm for characterizing causal networks in resting brain. Kadkhodaeian Bakhtiari S; Hossein-Zadeh GA Neuroimage; 2012 Apr; 60(2):1236-49. PubMed ID: 22245346 [TBL] [Abstract][Full Text] [Related]
12. [Blind source separation for fMRI signals using a new independent component analysis algorithm and principal component analysis]. Zhang W; Shi Z; Tang H; Tang Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):430-3. PubMed ID: 17591275 [TBL] [Abstract][Full Text] [Related]
13. Detecting overlapped functional clusters in resting state fMRI with Connected Iterative Scan: a graph theory based clustering algorithm. Yan X; Kelley S; Goldberg M; Biswal BB J Neurosci Methods; 2011 Jul; 199(1):108-18. PubMed ID: 21565220 [TBL] [Abstract][Full Text] [Related]
14. A novel approach for fMRI data analysis based on the combination of sparse approximation and affinity propagation clustering. Ren T; Zeng W; Wang N; Chen L; Wang C Magn Reson Imaging; 2014 Jul; 32(6):736-46. PubMed ID: 24721006 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI. Pruim RHR; Mennes M; Buitelaar JK; Beckmann CF Neuroimage; 2015 May; 112():278-287. PubMed ID: 25770990 [TBL] [Abstract][Full Text] [Related]
16. Dissecting cognitive stages with time-resolved fMRI data: a comparison of fuzzy clustering and independent component analysis. Smolders A; De Martino F; Staeren N; Scheunders P; Sijbers J; Goebel R; Formisano E Magn Reson Imaging; 2007 Jul; 25(6):860-8. PubMed ID: 17482412 [TBL] [Abstract][Full Text] [Related]
17. Segregation of frontoparietal and cerebellar components within saccade and vergence networks using hierarchical independent component analysis of fMRI. Alkan Y; Biswal BB; Taylor PA; Alvarez TL Vis Neurosci; 2011 May; 28(3):247-61. PubMed ID: 21554775 [TBL] [Abstract][Full Text] [Related]
18. An fMRI study of acupuncture using independent component analysis. Zhang Y; Qin W; Liu P; Tian J; Liang J; von Deneen KM; Liu Y Neurosci Lett; 2009 Jan; 449(1):6-9. PubMed ID: 18977409 [TBL] [Abstract][Full Text] [Related]
19. Independent component model of the default-mode brain function: combining individual-level and population-level analyses in resting-state fMRI. Esposito F; Aragri A; Pesaresi I; Cirillo S; Tedeschi G; Marciano E; Goebel R; Di Salle F Magn Reson Imaging; 2008 Sep; 26(7):905-13. PubMed ID: 18486388 [TBL] [Abstract][Full Text] [Related]
20. Discussion on the choice of separated components in fMRI data analysis by spatial independent component analysis. Chen H; Yao D Magn Reson Imaging; 2004 Jul; 22(6):827-33. PubMed ID: 15234451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]