These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 2265921)

  • 1. Lithium and imipramin effects on paw preference in cats.
    Tan U; Kara I; Tan S
    Int J Neurosci; 1990 May; 52(1-2):25-8. PubMed ID: 2265921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of testosterone on paw preference in adult cats.
    Tan U; Kara I; Kutlu N
    Int J Neurosci; 1991; 56(1-4):187-91. PubMed ID: 1938134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between the degree of paw preference and excitability of motor neurons innervating foreleg flexors in right- and left-preferent cats.
    Calişkan S; Tan U
    Int J Neurosci; 1990 Aug; 53(2-4):173-8. PubMed ID: 2265936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paw preference in cats: distribution and sex differences.
    Tan U; Yaprak M; Kutlu N
    Int J Neurosci; 1990 Feb; 50(3-4):195-208. PubMed ID: 2265897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of paw preference in mongrel and tortoise-shell cats and the relation of hemispheric weight to paw preference: sexual dimorphism in paw use and its relation to hemispheric weight.
    Tan U
    Int J Neurosci; 1993 Jun; 70(3-4):199-212. PubMed ID: 8063539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laterality in cats: paw preference and performance in a visuomotor activity.
    Fabre-Thorpe M; Fagot J; Lorincz E; Levesque F; Vauclair J
    Cortex; 1993 Mar; 29(1):15-24. PubMed ID: 8472552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. There is an inverse relationship between the reflex size from wrist flexors and paw preference in spinal cats.
    Calişkan S; Tan U
    Int J Neurosci; 1990 Aug; 53(2-4):69-74. PubMed ID: 2265950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Lateralization in cats in a pointing task of the anterior limb towards a moving target].
    Fabre-Thorpe M; Fagot J; Vauclair J
    C R Acad Sci III; 1991; 313(9):427-33. PubMed ID: 1756416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationships between paw preference and the right- and left-brain weights in male and female adult cats: ipsilateral and contralateral motor control with regard to asymmetric postural and manipulative actions.
    Tan U; Kutlu N
    Int J Neurosci; 1993; 69(1-4):21-34. PubMed ID: 8083008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The distribution of paw preference in right-, left-, and mixed pawed male and female cats: the role of a female right-shift factor in handedness.
    Tan U; Kutlu N
    Int J Neurosci; 1991 Aug; 59(4):219-29. PubMed ID: 1955283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between problem-solving ability and laterality in cats.
    Isparta S; Salgirli Demirbas Y; Bars Z; Cinar Kul B; Güntürkün O; Ocklenburg S; Da Graca Pereira G
    Behav Brain Res; 2020 Aug; 391():112691. PubMed ID: 32428637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of practice on paw preference in a reaching task in cats.
    Lorincz E; Fabre-Thorpe M
    C R Acad Sci III; 1994 Dec; 317(12):1081-8. PubMed ID: 7697464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the influence of neuter status on paw preference in dogs and cats.
    Duncan A; Simon T; Frasnelli E
    Laterality; 2022 Jul; 27(4):359-378. PubMed ID: 35688604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of total and partial callosal agenesis on the development of paw preference performance in the BALB/cCF mouse.
    Schmidt SL; Manhães AC; de Moraes VZ
    Brain Res; 1991 Apr; 545(1-2):123-30. PubMed ID: 1860038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic effects of imipramine and lithium on postsynaptic 5-HT1A and 5-HT1B sites and on presynaptic 5-HT3 sites in rat brain.
    Mizuta T; Segawa T
    Jpn J Pharmacol; 1988 Jun; 47(2):107-13. PubMed ID: 3199589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3H-Imipramine high-affinity binding sites in rat brain. Effects of imipramine and lithium.
    Plenge P; Mellerup ET
    Psychopharmacology (Berl); 1982; 77(1):94-7. PubMed ID: 6812124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic pharmacological treatment with certain antidepressants alters the expression and DNA-binding activity of transcription factor AP-2.
    Damberg M; Ekblom J; Oreland L
    Life Sci; 2000 Dec; 68(6):669-78. PubMed ID: 11205881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of psychoactive drugs on norepinephrine-3-H metabolism in brain.
    Schanberg SM; Schildkraut JJ; Kopin IJ
    Biochem Pharmacol; 1967 Feb; 16(2):393-9. PubMed ID: 6029920
    [No Abstract]   [Full Text] [Related]  

  • 19. In vitro and in vivo effect of chloropromazine, imipramine and lithium chloride on monoamine oxidase activity in rat brain mitochondria.
    Nag M; Nandi N
    Biosci Rep; 1987 Sep; 7(9):701-4. PubMed ID: 2827805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of intraperitoneally injected lithium, imipramine and diazepam on nitrate levels in rat amygdala.
    Maruta S; Suzuki E; Yokoyama M; Sato T; Inada K; Watanabe S; Miyaoka H
    Psychiatry Clin Neurosci; 2005 Jun; 59(3):358-61. PubMed ID: 15896232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.