BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22659320)

  • 1. Mechanism of dissociative inhibition of HIV protease and its autoprocessing from a precursor.
    Sayer JM; Aniana A; Louis JM
    J Mol Biol; 2012 Sep; 422(2):230-44. PubMed ID: 22659320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terminal interface conformations modulate dimer stability prior to amino terminal autoprocessing of HIV-1 protease.
    Agniswamy J; Sayer JM; Weber IT; Louis JM
    Biochemistry; 2012 Feb; 51(5):1041-50. PubMed ID: 22242794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational and structural studies aimed at characterizing the monomer of HIV-1 protease and its precursor.
    Ishima R; Torchia DA; Louis JM
    J Biol Chem; 2007 Jun; 282(23):17190-9. PubMed ID: 17412697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Functional Interplay between Human Immunodeficiency Virus Type 1 Protease Residues 77 and 93 Involved in Differential Regulation of Precursor Autoprocessing and Mature Protease Activity.
    Counts CJ; Ho PS; Donlin MJ; Tavis JE; Chen C
    PLoS One; 2015; 10(4):e0123561. PubMed ID: 25893662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible catalytic site conformations implicated in modulation of HIV-1 protease autoprocessing reactions.
    Huang L; Li Y; Chen C
    Retrovirology; 2011 Oct; 8():79. PubMed ID: 21985091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteolytic processing of HIV-1 protease precursor, kinetics and mechanism.
    Louis JM; Wondrak EM; Kimmel AR; Wingfield PT; Nashed NT
    J Biol Chem; 1999 Aug; 274(33):23437-42. PubMed ID: 10438521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of flanking sequences on the dimer stability of human immunodeficiency virus type 1 protease.
    Wondrak EM; Louis JM
    Biochemistry; 1996 Oct; 35(39):12957-62. PubMed ID: 8841142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HIV-1 protease with leucine zipper fused at N-terminus exhibits enhanced linker amino acid-dependent activity.
    Yu FH; Wang CT
    Retrovirology; 2018 Apr; 15(1):32. PubMed ID: 29655366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of Clinical Inhibitors to a Model Precursor of a Rationally Selected Multidrug Resistant HIV-1 Protease Is Significantly Weaker Than That to the Released Mature Enzyme.
    Park JH; Sayer JM; Aniana A; Yu X; Weber IT; Harrison RW; Louis JM
    Biochemistry; 2016 Apr; 55(16):2390-400. PubMed ID: 27039930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic, stability, and structural changes in high-resolution crystal structures of HIV-1 protease with drug-resistant mutations L24I, I50V, and G73S.
    Liu F; Boross PI; Wang YF; Tozser J; Louis JM; Harrison RW; Weber IT
    J Mol Biol; 2005 Dec; 354(4):789-800. PubMed ID: 16277992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autocatalytic maturation, physical/chemical properties, and crystal structure of group N HIV-1 protease: relevance to drug resistance.
    Sayer JM; Agniswamy J; Weber IT; Louis JM
    Protein Sci; 2010 Nov; 19(11):2055-72. PubMed ID: 20737578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations Proximal to Sites of Autoproteolysis and the α-Helix That Co-evolve under Drug Pressure Modulate the Autoprocessing and Vitality of HIV-1 Protease.
    Louis JM; Deshmukh L; Sayer JM; Aniana A; Clore GM
    Biochemistry; 2015 Sep; 54(35):5414-24. PubMed ID: 26266692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A transient precursor of the HIV-1 protease. Isolation, characterization, and kinetics of maturation.
    Wondrak EM; Nashed NT; Haber MT; Jerina DM; Louis JM
    J Biol Chem; 1996 Feb; 271(8):4477-81. PubMed ID: 8626801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease.
    Tang C; Louis JM; Aniana A; Suh JY; Clore GM
    Nature; 2008 Oct; 455(7213):693-6. PubMed ID: 18833280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autoprocessing of HIV-1 protease is tightly coupled to protein folding.
    Louis JM; Clore GM; Gronenborn AM
    Nat Struct Biol; 1999 Sep; 6(9):868-75. PubMed ID: 10467100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay between protease and reverse transcriptase dimerization in a model HIV-1 polyprotein.
    Chagas BCA; Zhou X; Guerrero M; Ilina TV; Ishima R
    Protein Sci; 2024 Jul; 33(7):e5080. PubMed ID: 38896002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of human immunodeficiency virus type 1 protease autoprocessing by charge properties of surface residue 69.
    Huang L; Sayer JM; Swinford M; Louis JM; Chen C
    J Virol; 2009 Aug; 83(15):7789-93. PubMed ID: 19457992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Context-dependent autoprocessing of human immunodeficiency virus type 1 protease precursors.
    Tien C; Huang L; Watanabe SM; Speidel JT; Carter CA; Chen C
    PLoS One; 2018; 13(1):e0191372. PubMed ID: 29338056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folding regulates autoprocessing of HIV-1 protease precursor.
    Chatterjee A; Mridula P; Mishra RK; Mittal R; Hosur RV
    J Biol Chem; 2005 Mar; 280(12):11369-78. PubMed ID: 15632156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The L76V drug resistance mutation decreases the dimer stability and rate of autoprocessing of HIV-1 protease by reducing internal hydrophobic contacts.
    Louis JM; Zhang Y; Sayer JM; Wang YF; Harrison RW; Weber IT
    Biochemistry; 2011 May; 50(21):4786-95. PubMed ID: 21446746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.