BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 22659829)

  • 21. Recent advances in understanding proton coupled peptide transport via the POT family.
    Newstead S
    Curr Opin Struct Biol; 2017 Aug; 45():17-24. PubMed ID: 27865112
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling of glycerol-3-phosphate transporter suggests a potential 'tilt' mechanism involved in its function.
    Tsigelny IF; Greenberg J; Kouznetsova V; Nigam SK
    J Bioinform Comput Biol; 2008 Oct; 6(5):885-904. PubMed ID: 18942157
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional and structural characterization of a prokaryotic peptide transporter with features similar to mammalian PEPT1.
    Weitz D; Harder D; Casagrande F; Fotiadis D; Obrdlik P; Kelety B; Daniel H
    J Biol Chem; 2007 Feb; 282(5):2832-9. PubMed ID: 17158458
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural basis for the alternating access mechanism of the cation diffusion facilitator YiiP.
    Lopez-Redondo ML; Coudray N; Zhang Z; Alexopoulos J; Stokes DL
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):3042-3047. PubMed ID: 29507252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Critical role of the proton-dependent oligopeptide transporter (POT) in the cellular uptake of the peptidyl nucleoside antibiotic, blasticidin S.
    Kitamura K; Kinsui EZ; Abe F
    Biochim Biophys Acta Mol Cell Res; 2017 Feb; 1864(2):393-398. PubMed ID: 27916534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and mechanism of the uracil transporter UraA.
    Lu F; Li S; Jiang Y; Jiang J; Fan H; Lu G; Deng D; Dang S; Zhang X; Wang J; Yan N
    Nature; 2011 Apr; 472(7342):243-6. PubMed ID: 21423164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional implications and ubiquitin-dependent degradation of the peptide transporter Ptr2 in Saccharomyces cerevisiae.
    Kawai K; Moriya A; Uemura S; Abe F
    Eukaryot Cell; 2014 Nov; 13(11):1380-92. PubMed ID: 25172766
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Function, Regulation, and Pathophysiological Relevance of the POT Superfamily, Specifically PepT1 in Inflammatory Bowel Disease.
    Viennois E; Pujada A; Zen J; Merlin D
    Compr Physiol; 2018 Mar; 8(2):731-760. PubMed ID: 29687900
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A.
    Jiang D; Zhao Y; Wang X; Fan J; Heng J; Liu X; Feng W; Kang X; Huang B; Liu J; Zhang XC
    Proc Natl Acad Sci U S A; 2013 Sep; 110(36):14664-9. PubMed ID: 23950222
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring Conformational Transitions and Free-Energy Profiles of Proton-Coupled Oligopeptide Transporters.
    Batista MRB; Watts A; José Costa-Filho A
    J Chem Theory Comput; 2019 Nov; 15(11):6433-6443. PubMed ID: 31639304
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The structural basis of substrate translocation by the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily.
    Lemieux MJ; Huang Y; Wang DN
    Curr Opin Struct Biol; 2004 Aug; 14(4):405-12. PubMed ID: 15313233
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasticity of the binding pocket in peptide transporters underpins promiscuous substrate recognition.
    Kotov V; Killer M; Jungnickel KEJ; Lei J; Finocchio G; Steinke J; Bartels K; Strauss J; Dupeux F; Humm AS; Cornaciu I; Márquez JA; Pardon E; Steyaert J; Löw C
    Cell Rep; 2023 Aug; 42(8):112831. PubMed ID: 37467108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural Biology of the Major Facilitator Superfamily Transporters.
    Yan N
    Annu Rev Biophys; 2015; 44():257-83. PubMed ID: 26098515
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure and mechanism of GlpT, the glycerol-3-phosphate transporter from E. coli.
    Lemieux MJ; Huang Y; Wang da N
    J Electron Microsc (Tokyo); 2005; 54 Suppl 1():i43-6. PubMed ID: 16157640
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cryo-EM structure of PepT2 reveals structural basis for proton-coupled peptide and prodrug transport in mammals.
    Parker JL; Deme JC; Wu Z; Kuteyi G; Huo J; Owens RJ; Biggin PC; Lea SM; Newstead S
    Sci Adv; 2021 Aug; 7(35):. PubMed ID: 34433568
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology.
    Daniel H; Kottra G
    Pflugers Arch; 2004 Feb; 447(5):610-8. PubMed ID: 12905028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Structure of a Sugar Transporter of the Glucose EIIC Superfamily Provides Insight into the Elevator Mechanism of Membrane Transport.
    McCoy JG; Ren Z; Stanevich V; Lee J; Mitra S; Levin EJ; Poget S; Quick M; Im W; Zhou M
    Structure; 2016 Jun; 24(6):956-64. PubMed ID: 27161976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances in understanding prodrug transport through the SLC15 family of proton-coupled transporters.
    Minhas GS; Newstead S
    Biochem Soc Trans; 2020 Apr; 48(2):337-346. PubMed ID: 32219385
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Membrane Chemistry Tunes the Structure of a Peptide Transporter.
    Lasitza-Male T; Bartels K; Jungwirth J; Wiggers F; Rosenblum G; Hofmann H; Löw C
    Angew Chem Int Ed Engl; 2020 Oct; 59(43):19121-19128. PubMed ID: 32744783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proton-coupled oligopeptide transporter (POT) family expression in human nasal epithelium and their drug transport potential.
    Agu R; Cowley E; Shao D; Macdonald C; Kirkpatrick D; Renton K; Massoud E
    Mol Pharm; 2011 Jun; 8(3):664-72. PubMed ID: 21366347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.