These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 22660062)

  • 21. Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode.
    Escorcia I; Grant J; Gough J; Cumming DR
    Opt Lett; 2016 Jul; 41(14):3261-4. PubMed ID: 27420510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Ultra-Wideband THz/IR Metamaterial Absorber Based on Doped Silicon.
    Liu H; Luo K; Tang S; Peng D; Hu F; Tu L
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30572632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and fabrication of a microcoil metamaterial absorber for the sub-terahertz region.
    Agulto VC; Ling Z; Zhao Z; Feng S; Kato K; Haga M; Mag-Usara VK; Yoshimura M; Nakajima M
    Opt Lett; 2023 Dec; 48(23):6324-6327. PubMed ID: 38039258
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transmission line model and fields analysis of metamaterial absorber in the terahertz band.
    Wen QY; Xie YS; Zhang HW; Yang QH; Li YX; Liu YL
    Opt Express; 2009 Oct; 17(22):20256-65. PubMed ID: 19997251
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tunable broadband all-silicon terahertz absorber based on a simple metamaterial structure.
    Lang T; Shen T; Wang G; Shen C
    Appl Opt; 2020 Jul; 59(21):6265-6270. PubMed ID: 32749287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polarization-insensitive broadband terahertz metamaterial absorber based on hybrid structures.
    Lu Y; Li J; Zhang S; Sun J; Yao JQ
    Appl Opt; 2018 Jul; 57(21):6269-6275. PubMed ID: 30118008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Liquid crystal tunable metamaterial absorber.
    Shrekenhamer D; Chen WC; Padilla WJ
    Phys Rev Lett; 2013 Apr; 110(17):177403. PubMed ID: 23679774
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hybrid metamaterial design and fabrication for terahertz resonance response enhancement.
    Lim CS; Hong MH; Chen ZC; Han NR; Luk'yanchuk B; Chong TC
    Opt Express; 2010 Jun; 18(12):12421-9. PubMed ID: 20588369
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Broadband terahertz metamaterial absorber: design and fabrication.
    Qiu Y; Wang J; Xiao M; Lang T
    Appl Opt; 2021 Nov; 60(32):10055-10061. PubMed ID: 34807109
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Split ring hole metamaterial-enhanced pyroelectric detector for efficient multi-narrowband terahertz detection.
    Wang Y; Jing W; Gao L; Han F; Meng Q; Yang C; Zhao L; Jiang Z; Chan CH
    Opt Express; 2024 May; 32(11):19779-19791. PubMed ID: 38859104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Voltage-Tuned Terahertz Absorber Based on MoS
    Samy O; Belmoubarik M; Otsuji T; El Moutaouakil A
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Terahertz Detectors Using Microelectromechanical System Resonators.
    Li C; Zhang Y; Hirakawa K
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447789
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual-band terahertz absorber based on square ring metamaterial structure.
    Wang D; Xu KD; Luo S; Cui Y; Zhang L; Liao Z; Cui J
    Opt Express; 2023 Feb; 31(4):5940-5950. PubMed ID: 36823863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Dual-Band High-Sensitivity THz Metamaterial Sensor Based on Split Metal Stacking Ring.
    Lu X; Ge H; Jiang Y; Zhang Y
    Biosensors (Basel); 2022 Jun; 12(7):. PubMed ID: 35884274
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low loss and magnetic field-tunable superconducting terahertz metamaterial.
    Jin B; Zhang C; Engelbrecht S; Pimenov A; Wu J; Xu Q; Cao C; Chen J; Xu W; Kang L; Wu P
    Opt Express; 2010 Aug; 18(16):17504-9. PubMed ID: 20721135
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications.
    Yahiaoui R; Guillet JP; de Miollis F; Mounaix P
    Opt Lett; 2013 Dec; 38(23):4988-90. PubMed ID: 24281490
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Terahertz ambipolar dual-wavelength quantum cascade laser.
    Lever L; Hinchcliffe NM; Khanna SP; Dean P; Ikonic Z; Evans CA; Davies AG; Harrison P; Linfield EH; Kelsall RW
    Opt Express; 2009 Oct; 17(22):19926-32. PubMed ID: 19997216
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and performance of a terahertz absorber based on patterned graphene.
    Jiang Y; Zhang H; Wang J; Gao CN; Wang J; Cao WP
    Opt Lett; 2018 Sep; 43(17):4296-4299. PubMed ID: 30160711
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tunable terahertz metamaterial absorber based on Dirac semimetal films.
    Wang T; Cao M; Zhang H; Zhang Y
    Appl Opt; 2018 Nov; 57(32):9555-9561. PubMed ID: 30461735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers.
    Ozbey B; Aktas O
    Opt Express; 2011 Mar; 19(7):5741-52. PubMed ID: 21451599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.