These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Heterodyne interferometer scheme using a double pass in an acousto-optic modulator. Park Y; Cho K Opt Lett; 2011 Feb; 36(3):331-3. PubMed ID: 21283180 [TBL] [Abstract][Full Text] [Related]
26. Air pollution monitoring with a Q-switched CO(2)-laser lidar using heterodyne detection. Lundqvist S; Fält CO; Persson U; Marthinsson B; Eng ST Appl Opt; 1981 Jul; 20(14):2534-8. PubMed ID: 20332988 [TBL] [Abstract][Full Text] [Related]
27. Effect of atmospheric turbulence on heterodyne lidar performance. Belen'kii MS Appl Opt; 1993 Sep; 32(27):5368-72. PubMed ID: 20856346 [TBL] [Abstract][Full Text] [Related]
28. Characterization of the phase modulation property of a free-space electro-optic modulator by interframe intensity correlation matrix. Yue H; Song L; Hu Z; Liu H; Liu Y; Liu Y; Peng Z Appl Opt; 2012 Jul; 51(19):4457-62. PubMed ID: 22772119 [TBL] [Abstract][Full Text] [Related]
29. Pseudo-random modulation continuous-wave lidar for the measurements of mesopause region sodium density. Li F; Li T; Fang X; Tian B; Dou X Opt Express; 2021 Jan; 29(2):1932-1944. PubMed ID: 33726397 [TBL] [Abstract][Full Text] [Related]
31. FMCW LiDAR System to Reduce Hardware Complexity and Post-Processing Techniques to Improve Distance Resolution. Kim C; Jung Y; Lee S Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33266404 [TBL] [Abstract][Full Text] [Related]
32. Integrated microwave acousto-optic frequency shifter on thin-film lithium niobate. Shao L; Sinclair N; Leatham J; Hu Y; Yu M; Turpin T; Crowe D; Lončar M Opt Express; 2020 Aug; 28(16):23728-23738. PubMed ID: 32752365 [TBL] [Abstract][Full Text] [Related]
33. Continuous adiabatic frequency conversion for FMCW-LiDAR. Mrokon A; Oehler J; Breunig I Sci Rep; 2024 Feb; 14(1):4990. PubMed ID: 38424205 [TBL] [Abstract][Full Text] [Related]
34. Laser frequency sweep linearization by iterative learning pre-distortion for FMCW LiDAR. Zhang X; Pouls J; Wu MC Opt Express; 2019 Apr; 27(7):9965-9974. PubMed ID: 31045144 [TBL] [Abstract][Full Text] [Related]
35. A Novel Method of Measuring Instantaneous Frequency of an Ultrafast Frequency Modulated Continuous-Wave Laser. Yang J; Yang T; Wang Z; Jia D; Ge C Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32660043 [TBL] [Abstract][Full Text] [Related]
36. Research on heterodyne detection of a mode-locked pulse laser based on an acousto-optic frequency shift. Bai Y; Ren D; Zhao W; Qian L; Chen Z; Liu Y Appl Opt; 2010 Jul; 49(20):4018-23. PubMed ID: 20648182 [TBL] [Abstract][Full Text] [Related]
37. Distance and Velocity Measurement of Coherent Lidar Based on Chirp Pulse Compression. Yang J; Zhao B; Liu B Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31137481 [TBL] [Abstract][Full Text] [Related]
38. Comparison of IPDA lidar receiver sensitivity for coherent detection and for direct detection using sine-wave and pulsed modulation. Sun X; Abshire JB Opt Express; 2012 Sep; 20(19):21291-304. PubMed ID: 23037252 [TBL] [Abstract][Full Text] [Related]
39. Range selective phase-shifting frequency-modulated digital holography with temporal-heterodyning. Hammond C; Babbitt WR; Mohan RK Appl Opt; 2023 Apr; 62(10):D157-D162. PubMed ID: 37132781 [TBL] [Abstract][Full Text] [Related]
40. Millimeter-wave and microwave signal generation by low-bandwidth electro-optic phase modulation. Torres-Company V; Fernández-Alonso M; Lancis J; Barreiro JC; Andrés P Opt Express; 2006 Oct; 14(21):9617-26. PubMed ID: 19529352 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]