These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 22660273)
21. Heterogeneous conversion of calcite aerosol by nitric acid. Preszler Prince A; Grassian VH; Kleiber P; Young MA Phys Chem Chem Phys; 2007 Feb; 9(5):622-34. PubMed ID: 17242744 [TBL] [Abstract][Full Text] [Related]
22. Optical properties of internally mixed aerosol particles composed of dicarboxylic acids and ammonium sulfate. Freedman MA; Hasenkopf CA; Beaver MR; Tolbert MA J Phys Chem A; 2009 Dec; 113(48):13584-92. PubMed ID: 19877658 [TBL] [Abstract][Full Text] [Related]
23. Gas-particle partitioning of alcohol vapors on organic aerosols. Chan LP; Lee AK; Chan CK Environ Sci Technol; 2010 Jan; 44(1):257-62. PubMed ID: 19938828 [TBL] [Abstract][Full Text] [Related]
24. Phase changes during hygroscopic cycles of mixed organic/inorganic model systems of tropospheric aerosols. Marcolli C; Krieger UK J Phys Chem A; 2006 Feb; 110(5):1881-93. PubMed ID: 16451021 [TBL] [Abstract][Full Text] [Related]
25. Heterogeneous Reactivity of Nitric Acid with Nascent Sea Spray Aerosol: Large Differences Observed between and within Individual Particles. Ault AP; Guasco TL; Baltrusaitis J; Ryder OS; Trueblood JV; Collins DB; Ruppel MJ; Cuadra-Rodriguez LA; Prather KA; Grassian VH J Phys Chem Lett; 2014 Aug; 5(15):2493-500. PubMed ID: 26277935 [TBL] [Abstract][Full Text] [Related]
26. Surface-catalyzed chlorine and nitrogen activation: mechanisms for the heterogeneous formation of ClNO, NO, NO2, HONO, and N2O from HNO3 and HCl on aluminum oxide particle surfaces. Rubasinghege G; Grassian VH J Phys Chem A; 2012 May; 116(21):5180-92. PubMed ID: 22536987 [TBL] [Abstract][Full Text] [Related]
27. Heterogeneous photochemistry of trace atmospheric gases with components of mineral dust aerosol. Chen H; Navea JG; Young MA; Grassian VH J Phys Chem A; 2011 Feb; 115(4):490-9. PubMed ID: 21210685 [TBL] [Abstract][Full Text] [Related]
28. Aqueous-phase OH oxidation of glyoxal: application of a novel analytical approach employing aerosol mass spectrometry and complementary off-line techniques. Lee AK; Zhao R; Gao SS; Abbatt JP J Phys Chem A; 2011 Sep; 115(38):10517-26. PubMed ID: 21854005 [TBL] [Abstract][Full Text] [Related]
29. The effect of humidity on the ozonolysis of unsaturated compounds in aerosol particles. Lee JW; Carrascón V; Gallimore PJ; Fuller SJ; Björkegren A; Spring DR; Pope FD; Kalberer M Phys Chem Chem Phys; 2012 Jun; 14(22):8023-31. PubMed ID: 22532101 [TBL] [Abstract][Full Text] [Related]
30. Real-Time Studies of Iron Oxalate-Mediated Oxidation of Glycolaldehyde as a Model for Photochemical Aging of Aqueous Tropospheric Aerosols. Thomas DA; Coggon MM; Lignell H; Schilling KA; Zhang X; Schwantes RH; Flagan RC; Seinfeld JH; Beauchamp JL Environ Sci Technol; 2016 Nov; 50(22):12241-12249. PubMed ID: 27731989 [TBL] [Abstract][Full Text] [Related]
31. Infrared spectroscopic studies of the heterogeneous reaction of ozone with dry maleic and fumaric acid aerosol particles. Nájera JJ; Percival CJ; Horn AB Phys Chem Chem Phys; 2009 Oct; 11(40):9093-103. PubMed ID: 19812829 [TBL] [Abstract][Full Text] [Related]
32. Exploring the complexity of aerosol particle properties and processes using single particle techniques. Krieger UK; Marcolli C; Reid JP Chem Soc Rev; 2012 Oct; 41(19):6631-62. PubMed ID: 22739756 [TBL] [Abstract][Full Text] [Related]
33. Photo-oxidation of low-volatility organics found in motor vehicle emissions: production and chemical evolution of organic aerosol mass. Miracolo MA; Presto AA; Lambe AT; Hennigan CJ; Donahue NM; Kroll JH; Worsnop DR; Robinson AL Environ Sci Technol; 2010 Mar; 44(5):1638-43. PubMed ID: 20121083 [TBL] [Abstract][Full Text] [Related]
35. Cryo-transmission electron microscopy imaging of the morphology of submicrometer aerosol containing organic acids and ammonium sulfate. Veghte DP; Bittner DR; Freedman MA Anal Chem; 2014 Mar; 86(5):2436-42. PubMed ID: 24502281 [TBL] [Abstract][Full Text] [Related]
36. Characterization and optimization of an online system for the simultaneous measurement of atmospheric water-soluble constituents in the gas and particle phases. Markovic MZ; VandenBoer TC; Murphy JG J Environ Monit; 2012 Jul; 14(7):1872-84. PubMed ID: 22535486 [TBL] [Abstract][Full Text] [Related]
37. Measuring rates of reaction in supercooled organic particles with implications for atmospheric aerosol. Hearn JD; Smith GD Phys Chem Chem Phys; 2005 Jul; 7(13):2549-51. PubMed ID: 16189562 [TBL] [Abstract][Full Text] [Related]
38. Surfactants from the gas phase may promote cloud droplet formation. Sareen N; Schwier AN; Lathem TL; Nenes A; McNeill VF Proc Natl Acad Sci U S A; 2013 Feb; 110(8):2723-8. PubMed ID: 23382211 [TBL] [Abstract][Full Text] [Related]
39. Heterogeneous interactions of calcite aerosol with sulfur dioxide and sulfur dioxide-nitric acid mixtures. Prince AP; Kleiber P; Grassian VH; Young MA Phys Chem Chem Phys; 2007 Jul; 9(26):3432-9. PubMed ID: 17664967 [TBL] [Abstract][Full Text] [Related]
40. A statistical description of the evolution of cloud condensation nuclei activity during the heterogeneous oxidation of squalane and bis(2-ethylhexyl) sebacate aerosol by hydroxyl radicals. Harmon CW; Ruehl CR; Cappa CD; Wilson KR Phys Chem Chem Phys; 2013 Jun; 15(24):9679-93. PubMed ID: 23670352 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]