These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 22660969)
21. Phenological and seismological impacts on airborne pollen types: A case study of Olea pollen in the Region of Murcia, Mediterranean Spanish climate. Negral L; Aznar F; Galera MD; Costa-Gómez I; Moreno-Grau S; Moreno JM Sci Total Environ; 2022 Apr; 815():152686. PubMed ID: 34973329 [TBL] [Abstract][Full Text] [Related]
22. Variations, trends and forecast models for the airborne Olea europaea pollen season in Tétouan (NW of Morocco). Raissouni I; Boullayali A; Recio M; Bouziane H Int J Biometeorol; 2024 Dec; 68(12):2613-2625. PubMed ID: 39235597 [TBL] [Abstract][Full Text] [Related]
23. Disentangling the effects of feedback structure and climate on Poaceae annual airborne pollen fluctuations and the possible consequences of climate change. García de León D; García-Mozo H; Galán C; Alcázar P; Lima M; González-Andújar JL Sci Total Environ; 2015 Oct; 530-531():103-109. PubMed ID: 26026414 [TBL] [Abstract][Full Text] [Related]
24. The role of temperature in the onset of the Olea europaea L. pollen season in southwestern Spain. Galán C; García-Mozo H; Cariñanos P; Alcázar P; Domínguez-Vilches E Int J Biometeorol; 2001 Feb; 45(1):8-12. PubMed ID: 11411416 [TBL] [Abstract][Full Text] [Related]
25. What are the most important variables for Poaceae airborne pollen forecasting? Navares R; Aznarte JL Sci Total Environ; 2017 Feb; 579():1161-1169. PubMed ID: 27932221 [TBL] [Abstract][Full Text] [Related]
26. Predicting the Olea pollen concentration with a machine learning algorithm ensemble. Cordero JM; Rojo J; Gutiérrez-Bustillo AM; Narros A; Borge R Int J Biometeorol; 2021 Apr; 65(4):541-554. PubMed ID: 33188463 [TBL] [Abstract][Full Text] [Related]
27. A principal component regression model to forecast airborne concentration of Cupressaceae pollen in the city of Granada (SE Spain), during 1995-2006. Ocaña-Peinado FM; Valderrama MJ; Bouzas PR Int J Biometeorol; 2013 May; 57(3):483-6. PubMed ID: 22354576 [TBL] [Abstract][Full Text] [Related]
28. Climate change impact on the olive pollen season in Mediterranean areas of Italy: air quality in late spring from an allergenic point of view. Bonofiglio T; Orlandi F; Ruga L; Romano B; Fornaciari M Environ Monit Assess; 2013 Jan; 185(1):877-90. PubMed ID: 22466251 [TBL] [Abstract][Full Text] [Related]
29. Bioclimatic requirements for olive flowering in two Mediterranean regions located at the same latitude (Andalucia, Spain and Sicily, Italy). Orlandi F; Vazquez LM; Ruga L; Bonofiglio T; Fornaciari M; Garcia-Mozo H; Domínguez E; Romano B; Galan C Ann Agric Environ Med; 2005; 12(1):47-52. PubMed ID: 16028866 [TBL] [Abstract][Full Text] [Related]
30. Wind dynamics' influence on south Spain airborne olive-pollen during African intrusions. García-Mozo H; Hernández-Ceballos MA; Trigo MM; Galán C Sci Total Environ; 2017 Dec; 609():1340-1348. PubMed ID: 28793403 [TBL] [Abstract][Full Text] [Related]
31. Identification of potential sources of airborne Olea pollen in the Southwest Iberian Peninsula. Fernández-Rodríguez S; Skjøth CA; Tormo-Molina R; Brandao R; Caeiro E; Silva-Palacios I; Gonzalo-Garijo A; Smith M Int J Biometeorol; 2014 Apr; 58(3):337-48. PubMed ID: 23334443 [TBL] [Abstract][Full Text] [Related]
32. Environmental factors affecting the start of pollen season and concentrations of airborne Alnus pollen in two localities of Galicia (NW Spain). Rodriguez-Rajo FJ; Dopazo A; Jato V Ann Agric Environ Med; 2004; 11(1):35-44. PubMed ID: 15236496 [TBL] [Abstract][Full Text] [Related]
33. Airborne grass (Poaceae) pollen in southern Spain. Results of a 10-year study (1987-96). González Minero FJ; Candau P; Tomás C; Morales J Allergy; 1998 Mar; 53(3):266-74. PubMed ID: 9542606 [TBL] [Abstract][Full Text] [Related]
34. Airborne castanea pollen forecasting model for ecological and allergological implementation. Astray G; Fernández-González M; Rodríguez-Rajo FJ; López D; Mejuto JC Sci Total Environ; 2016 Apr; 548-549():110-121. PubMed ID: 26802339 [TBL] [Abstract][Full Text] [Related]
35. Airborne allergenic pollen in natural areas: Hornachuelos Natural Park, Cordoba, southern Spain. Garcia-Mozo H; Dominguez-Vilches E; Galan C Ann Agric Environ Med; 2007; 14(1):63-9. PubMed ID: 17655179 [TBL] [Abstract][Full Text] [Related]
36. Behavior of Platanus hispanica pollen, an important spring aeroallergen in northwestern Spain. Iglesias I; Rodriguez-Rajo FJ; Méndez J J Investig Allergol Clin Immunol; 2007; 17(3):145-56. PubMed ID: 17583100 [TBL] [Abstract][Full Text] [Related]
37. Predicting the Poaceae pollen season: six month-ahead forecasting and identification of relevant features. Navares R; Aznarte JL Int J Biometeorol; 2017 Apr; 61(4):647-656. PubMed ID: 27633563 [TBL] [Abstract][Full Text] [Related]
38. Short-term prediction of Betula airborne pollen concentration in Vigo (NW Spain) using logistic additive models and partially linear models. Cotos-Yáñez TR; Rodríguez-Rajo FJ; Jato MV Int J Biometeorol; 2004 May; 48(4):179-85. PubMed ID: 14770306 [TBL] [Abstract][Full Text] [Related]
39. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing. Rojo J; Rivero R; Romero-Morte J; Fernández-González F; Pérez-Badia R Int J Biometeorol; 2017 Feb; 61(2):335-348. PubMed ID: 27492630 [TBL] [Abstract][Full Text] [Related]
40. Predicting the start, peak and end of the Betula pollen season in Bavaria, Germany. Picornell A; Buters J; Rojo J; Traidl-Hoffmann C; Damialis A; Menzel A; Bergmann KC; Werchan M; Schmidt-Weber C; Oteros J Sci Total Environ; 2019 Nov; 690():1299-1309. PubMed ID: 31470492 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]