These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22661444)

  • 1. Photoconversion for tracking the dynamics of cell movement in Xenopus laevis embryos.
    Chernet BT; Adams DS; Levin M
    Cold Spring Harb Protoc; 2012 Jun; 2012(6):683-90. PubMed ID: 22661444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kindling fluorescent proteins for precise in vivo photolabeling.
    Chudakov DM; Belousov VV; Zaraisky AG; Novoselov VV; Staroverov DB; Zorov DB; Lukyanov S; Lukyanov KA
    Nat Biotechnol; 2003 Feb; 21(2):191-4. PubMed ID: 12524551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A green to red photoconvertible protein as an analyzing tool for early vertebrate development.
    Wacker SA; Oswald F; Wiedenmann J; Knöchel W
    Dev Dyn; 2007 Feb; 236(2):473-80. PubMed ID: 16964606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoconvertible fluorescent protein EosFP: biophysical properties and cell biology applications.
    Nienhaus GU; Nienhaus K; Hölzle A; Ivanchenko S; Renzi F; Oswald F; Wolff M; Schmitt F; Röcker C; Vallone B; Weidemann W; Heilker R; Nar H; Wiedenmann J
    Photochem Photobiol; 2006; 82(2):351-8. PubMed ID: 16613485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blue-shift photoconversion of near-infrared fluorescent proteins for labeling and tracking in living cells and organisms.
    Pennacchietti F; Alvelid J; Morales RA; Damenti M; Ollech D; Oliinyk OS; Shcherbakova DM; Villablanca EJ; Verkhusha VV; Testa I
    Nat Commun; 2023 Dec; 14(1):8402. PubMed ID: 38114484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of KikGR a photoconvertible green-to-red fluorescent protein for cell labeling and lineage analysis in ES cells and mouse embryos.
    Nowotschin S; Hadjantonakis AK
    BMC Dev Biol; 2009 Sep; 9():49. PubMed ID: 19740427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for staining of cell nuclei in Xenopus laevis embryos with cyanine dyes for whole-mount confocal laser scanning microscopy.
    de Mazière AM; Hage WJ; Ubbels GA
    J Histochem Cytochem; 1996 Apr; 44(4):399-402. PubMed ID: 8601700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microsurgical approaches to isolate tissues from Xenopus embryos for imaging morphogenesis.
    Kim HY; Davidson LA
    Cold Spring Harb Protoc; 2013 Apr; 2013(4):362-5. PubMed ID: 23547158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulating and imaging the early Xenopus laevis embryo.
    Danilchik MV
    Methods Mol Biol; 2011; 770():21-54. PubMed ID: 21805260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo time-lapse imaging of neuronal development in Xenopus.
    Ruthazer ES; Schohl A; Schwartz N; Tavakoli A; Tremblay M; Cline HT
    Cold Spring Harb Protoc; 2013 Sep; 2013(9):804-9. PubMed ID: 24003201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and use of reporter constructs for imaging morphogenesis in Xenopus embryos.
    Kim HY; Davidson LA
    Cold Spring Harb Protoc; 2013 Apr; 2013(4):359-61. PubMed ID: 23547157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green-to-red photoconvertible fluorescent proteins: tracking cell and protein dynamics on standard wide-field mercury arc-based microscopes.
    Baker SM; Buckheit RW; Falk MM
    BMC Cell Biol; 2010 Feb; 11():15. PubMed ID: 20175925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A live-imaging protocol to track cell movement in the 
    Chuyen A; Daian F; Pasini A; Kodjabachian L
    STAR Protoc; 2021 Dec; 2(4):100928. PubMed ID: 34778847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for photo-induced protein cleavage and green-to-red conversion of fluorescent protein EosFP.
    Nienhaus K; Nienhaus GU; Wiedenmann J; Nar H
    Proc Natl Acad Sci U S A; 2005 Jun; 102(26):9156-9. PubMed ID: 15964985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted Green-Red Photoconversion of EosFP, a Fluorescent Marker Protein.
    Ivanchenko S; Röcker C; Oswald F; Wiedenmann J; Nienhaus GU
    J Biol Phys; 2005 Dec; 31(3-4):249-59. PubMed ID: 23345897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion.
    Wiedenmann J; Ivanchenko S; Oswald F; Schmitt F; Röcker C; Salih A; Spindler KD; Nienhaus GU
    Proc Natl Acad Sci U S A; 2004 Nov; 101(45):15905-10. PubMed ID: 15505211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging Subcellular Structures in the Living Zebrafish Embryo.
    Engerer P; Plucinska G; Thong R; Trovò L; Paquet D; Godinho L
    J Vis Exp; 2016 Apr; (110):e53456. PubMed ID: 27078038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Labeling cellular structures in vivo using confined primed conversion of photoconvertible fluorescent proteins.
    Mohr MA; Argast P; Pantazis P
    Nat Protoc; 2016 Dec; 11(12):2419-2431. PubMed ID: 27809312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-magnification in vivo imaging of Xenopus embryos for cell and developmental biology.
    Kieserman EK; Lee C; Gray RS; Park TJ; Wallingford JB
    Cold Spring Harb Protoc; 2010 May; 2010(5):pdb.prot5427. PubMed ID: 20439414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses to DNA damage in Xenopus: cell death or cell cycle arrest.
    Greenwood J; Costanzo V; Robertson K; Hensey C; Gautier J
    Novartis Found Symp; 2001; 237():221-30; discussion 230-4. PubMed ID: 11444046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.