These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 22661463)

  • 1. Gene repair of an Usher syndrome causing mutation by zinc-finger nuclease mediated homologous recombination.
    Overlack N; Goldmann T; Wolfrum U; Nagel-Wolfrum K
    Invest Ophthalmol Vis Sci; 2012 Jun; 53(7):4140-6. PubMed ID: 22661463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beneficial read-through of a USH1C nonsense mutation by designed aminoglycoside NB30 in the retina.
    Goldmann T; Rebibo-Sabbah A; Overlack N; Nudelman I; Belakhov V; Baasov T; Ben-Yosef T; Wolfrum U; Nagel-Wolfrum K
    Invest Ophthalmol Vis Sci; 2010 Dec; 51(12):6671-80. PubMed ID: 20671281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular basis of human Usher syndrome: deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease.
    Reiners J; Nagel-Wolfrum K; Jürgens K; Märker T; Wolfrum U
    Exp Eye Res; 2006 Jul; 83(1):97-119. PubMed ID: 16545802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of zinc finger nuclease-associated toxicity.
    Cornu TI; Cathomen T
    Methods Mol Biol; 2010; 649():237-45. PubMed ID: 20680838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A toolbox and procedural notes for characterizing novel zinc finger nucleases for genome editing in plant cells.
    Tovkach A; Zeevi V; Tzfira T
    Plant J; 2009 Feb; 57(4):747-57. PubMed ID: 18980651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient targeted mutagenesis of the chordate Ciona intestinalis genome with zinc-finger nucleases.
    Kawai N; Ochiai H; Sakuma T; Yamada L; Sawada H; Yamamoto T; Sasakura Y
    Dev Growth Differ; 2012 Jun; 54(5):535-45. PubMed ID: 22640377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sandwiched zinc-finger nucleases demonstrating higher homologous recombination rates than conventional zinc-finger nucleases in mammalian cells.
    Mori T; Mori K; Tobimatsu T; Sera T
    Bioorg Med Chem Lett; 2014 Feb; 24(3):813-6. PubMed ID: 24412074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaffold protein harmonin (USH1C) provides molecular links between Usher syndrome type 1 and type 2.
    Reiners J; van Wijk E; Märker T; Zimmermann U; Jürgens K; te Brinke H; Overlack N; Roepman R; Knipper M; Kremer H; Wolfrum U
    Hum Mol Genet; 2005 Dec; 14(24):3933-43. PubMed ID: 16301216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A transient assay for monitoring zinc finger nuclease activity at endogenous plant gene targets.
    Hoshaw JP; Unger-Wallace E; Zhang F; Voytas DF
    Methods Mol Biol; 2010; 649():299-313. PubMed ID: 20680843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapy strategies for Usher syndrome Type 1C in the retina.
    Nagel-Wolfrum K; Baasov T; Wolfrum U
    Adv Exp Med Biol; 2014; 801():741-7. PubMed ID: 24664766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimum length of direct repeat sequences required for efficient homologous recombination induced by zinc finger nuclease in yeast.
    Ren C; Yan Q; Zhang Z
    Mol Biol Rep; 2014 Oct; 41(10):6939-48. PubMed ID: 25024047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered zinc finger nuclease-mediated homologous recombination of the human rhodopsin gene.
    Greenwald DL; Cashman SM; Kumar-Singh R
    Invest Ophthalmol Vis Sci; 2010 Dec; 51(12):6374-80. PubMed ID: 20671268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ZFN-induced mutagenesis and gene-targeting in Arabidopsis through Agrobacterium-mediated floral dip transformation.
    de Pater S; Neuteboom LW; Pinas JE; Hooykaas PJ; van der Zaal BJ
    Plant Biotechnol J; 2009 Oct; 7(8):821-35. PubMed ID: 19754840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Codon swapping of zinc finger nucleases confers expression in primary cells and in vivo from a single lentiviral vector.
    Abarrategui-Pontes C; Créneguy A; Thinard R; Fine EJ; Thepenier V; Fournier le RL; Cradick TJ; Bao G; Tesson L; Podevin G; Anegon I; Nguyen TH
    Curr Gene Ther; 2014; 14(5):365-76. PubMed ID: 25687502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro assessment of zinc finger nuclease activity.
    Cathomen T; Söllü C
    Methods Mol Biol; 2010; 649():227-35. PubMed ID: 20680837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular responses to targeted genomic sequence modification using single-stranded oligonucleotides and zinc-finger nucleases.
    Olsen PA; Solhaug A; Booth JA; Gelazauskaite M; Krauss S
    DNA Repair (Amst); 2009 Mar; 8(3):298-308. PubMed ID: 19071233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using zinc finger nucleases for efficient and heritable gene disruption in zebrafish.
    McCammon JM; Amacher SL
    Methods Mol Biol; 2010; 649():281-98. PubMed ID: 20680842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation and expression of zinc finger nucleases in plant cells.
    Tovkach A; Zeevi V; Tzfira T
    Methods Mol Biol; 2010; 649():315-36. PubMed ID: 20680844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and testing of zinc finger nucleases for use in mammalian cells.
    Porteus M
    Methods Mol Biol; 2008; 435():47-61. PubMed ID: 18370067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unidirectional cloning by cleaving heterogeneous sites with a single sandwiched zinc finger nuclease.
    Shinomiya K; Mori T; Aoyama Y; Sera T
    Biochem Biophys Res Commun; 2011 Nov; 414(4):733-6. PubMed ID: 22001928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.