BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 22661934)

  • 1. Evidence for broad versus segregated projections from cholinergic and noradrenergic nuclei to functionally and anatomically discrete subregions of prefrontal cortex.
    Chandler D; Waterhouse BD
    Front Behav Neurosci; 2012; 6():20. PubMed ID: 22661934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and distribution of projections from monoaminergic and cholinergic nuclei to functionally differentiated subregions of prefrontal cortex.
    Chandler DJ; Lamperski CS; Waterhouse BD
    Brain Res; 2013 Jul; 1522():38-58. PubMed ID: 23665053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topography of cholinergic afferents from the nucleus basalis of Meynert to representational areas of sensorimotor cortices in the rat.
    Baskerville KA; Chang HT; Herron P
    J Comp Neurol; 1993 Sep; 335(4):552-62. PubMed ID: 8227535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subregions of the periaqueductal gray topographically innervate the rostral ventral medulla in the rat.
    Van Bockstaele EJ; Aston-Jones G; Pieribone VA; Ennis M; Shipley MT
    J Comp Neurol; 1991 Jul; 309(3):305-27. PubMed ID: 1717516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct regional patterns in noradrenergic innervation of the rat prefrontal cortex.
    Cerpa JC; Marchand AR; Coutureau E
    J Chem Neuroanat; 2019 Mar; 96():102-109. PubMed ID: 30630012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The connections of the mouse olfactory bulb: a study using orthograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase.
    Shipley MT; Adamek GD
    Brain Res Bull; 1984 Jun; 12(6):669-88. PubMed ID: 6206930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organization of amygdaloid projections to the mediodorsal thalamus and prefrontal cortex: a fluorescence retrograde transport study in the rat.
    McDonald AJ
    J Comp Neurol; 1987 Aug; 262(1):46-58. PubMed ID: 3624548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Intersectional Viral-Genetic Method for Fluorescent Tracing of Axon Collaterals Reveals Details of Noradrenergic Locus Coeruleus Structure.
    Plummer NW; Chandler DJ; Powell JM; Scappini EL; Waterhouse BD; Jensen P
    eNeuro; 2020; 7(3):. PubMed ID: 32354756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collateral projections from nucleus reuniens of thalamus to hippocampus and medial prefrontal cortex in the rat: a single and double retrograde fluorescent labeling study.
    Hoover WB; Vertes RP
    Brain Struct Funct; 2012 Apr; 217(2):191-209. PubMed ID: 21918815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholinergic neurons of the laterodorsal tegmental nucleus: efferent and afferent connections.
    Satoh K; Fibiger HC
    J Comp Neurol; 1986 Nov; 253(3):277-302. PubMed ID: 2432101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural interaction between the basal forebrain and functionally distinct prefrontal cortices in the rhesus monkey.
    Ghashghaei HT; Barbas H
    Neuroscience; 2001; 103(3):593-614. PubMed ID: 11274781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential Effects of the Lateral Hypothalamus Lesion as an Origin of Orexin and Blockade of Orexin-1 Receptor in the Orbitofrontal Cortex and Anterior Cingulate Cortex on Their Neuronal Activity.
    Karimi S; Zibaii MI; Hamidi GA; Haghparast A
    Basic Clin Neurosci; 2022; 13(3):407-420. PubMed ID: 36457878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateralization and functional organization of the locus coeruleus projection to the trigeminal somatosensory pathway in rat.
    Simpson KL; Altman DW; Wang L; Kirifides ML; Lin RC; Waterhouse BD
    J Comp Neurol; 1997 Aug; 385(1):135-47. PubMed ID: 9268121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective prefrontal cortical projections to the region of the locus coeruleus and raphe nuclei in the rhesus monkey.
    Arnsten AF; Goldman-Rakic PS
    Brain Res; 1984 Jul; 306(1-2):9-18. PubMed ID: 6466989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specialized subregions in the cat motor cortex: anatomical demonstration of differential projections to rostral and caudal sectors.
    Yumiya H; Ghez C
    Exp Brain Res; 1984; 53(2):259-76. PubMed ID: 6200347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential distribution patterns from medial prefrontal cortex and dorsal raphe to the locus coeruleus in rats.
    Lu Y; Simpson KL; Weaver KJ; Lin RC
    Anat Rec (Hoboken); 2012 Jul; 295(7):1192-201. PubMed ID: 22674904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topography of serotonin neurons in the dorsal raphe nucleus that send axon collaterals to the rat prefrontal cortex and nucleus accumbens.
    Van Bockstaele EJ; Biswas A; Pickel VM
    Brain Res; 1993 Oct; 624(1-2):188-98. PubMed ID: 8252391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The organization of serotonergic projections to cerebral cortex in primates: retrograde transport studies.
    Wilson MA; Molliver ME
    Neuroscience; 1991; 44(3):555-70. PubMed ID: 1721683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The distribution of neocortical projection neurons in the locus coeruleus.
    Waterhouse BD; Lin CS; Burne RA; Woodward DJ
    J Comp Neurol; 1983 Jul; 217(4):418-31. PubMed ID: 6886061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The afferent connections of the substantia innominata in the monkey, Macaca fascicularis.
    Russchen FT; Amaral DG; Price JL
    J Comp Neurol; 1985 Dec; 242(1):1-27. PubMed ID: 3841131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.