These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22661978)

  • 1. Comparison of tissue heat balance- and thermal dissipation-derived sap flow measurements in ring-porous oaks and a pine.
    Renninger HJ; Schäfer KV
    Front Plant Sci; 2012; 3():103. PubMed ID: 22661978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An empirical study of the wound effect on sap flux density measured with thermal dissipation probes.
    Wiedemann A; Marañón-Jiménez S; Rebmann C; Herbst M; Cuntz M
    Tree Physiol; 2016 Dec; 36(12):1471-1484. PubMed ID: 27587487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stomatal ozone uptake of a Quercus serrata stand based on sap flow measurements with calibrated thermal dissipation sensors.
    Tanaka R; Chiu CW; Gomi T; Matsuda K; Izuta T; Watanabe M
    Sci Total Environ; 2023 Aug; 888():164005. PubMed ID: 37201825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray computed microtomography characterizes the wound effect that causes sap flow underestimation by thermal dissipation sensors.
    Marañón-Jiménez S; Van den Bulcke J; Piayda A; Van Acker J; Cuntz M; Rebmann C; Steppe K
    Tree Physiol; 2018 Feb; 38(2):287-301. PubMed ID: 28981912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calibration of thermal dissipation sap flow probes for ring- and diffuse-porous trees.
    Bush SE; Hultine KR; Sperry JS; Ehleringer JR
    Tree Physiol; 2010 Dec; 30(12):1545-54. PubMed ID: 21112973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in the radial patterns of sap flux density in pubescent oak (Quercus pubescens) and its implications for tree and stand transpiration measurements.
    Poyatos R; Cermák J; Llorens P
    Tree Physiol; 2007 Apr; 27(4):537-48. PubMed ID: 17241996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem.
    Renninger HJ; Carlo N; Clark KL; Schäfer KV
    Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medium-term sap flux monitoring in a Scots pine stand: analysis of the operability of the heat dissipation method for hydrological purposes.
    Oliveras I; Llorens P
    Tree Physiol; 2001 May; 21(7):473-80. PubMed ID: 11340048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactive xylem can explain differences in calibration factors for thermal dissipation probe sap flow measurements.
    Paudel I; Kanety T; Cohen S
    Tree Physiol; 2013 Sep; 33(9):986-1001. PubMed ID: 24128850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes.
    Wullschleger SD; Childs KW; King AW; Hanson PJ
    Tree Physiol; 2011 Jun; 31(6):669-79. PubMed ID: 21743059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood.
    James SA; Clearwater MJ; Meinzer FC; Goldstein G
    Tree Physiol; 2002 Mar; 22(4):277-83. PubMed ID: 11874724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resource use and efficiency, and stomatal responses to environmental drivers of oak and pine species in an Atlantic Coastal Plain forest.
    Renninger HJ; Carlo NJ; Clark KL; Schäfer KV
    Front Plant Sci; 2015; 6():297. PubMed ID: 25999966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radial profiles of sap flow with increasing tree size in maritime pine.
    Delzon S; Sartore M; Granier A; Loustau D
    Tree Physiol; 2004 Nov; 24(11):1285-93. PubMed ID: 15339738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biot-Granier Sensor: A Novel Strategy to Measuring Sap Flow in Trees.
    M Siqueira J; A Paço T; Machado da Silva J; C Silvestre J
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32580426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Sap flow characteristics of Quercus liaotungensis in response to sapwood area and soil moisture in the loess hilly region, China].
    Lyu JL; He QY; Yan MJ; Li GQ; Du S
    Ying Yong Sheng Tai Xue Bao; 2018 Mar; 29(3):725-731. PubMed ID: 29722212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating sap flux densities in date palm trees using the heat dissipation method and weighing lysimeters.
    Sperling O; Shapira O; Cohen S; Tripler E; Schwartz A; Lazarovitch N
    Tree Physiol; 2012 Sep; 32(9):1171-8. PubMed ID: 22887479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of daily water use estimates derived from constant-heat sap-flow probe values and gravimetric measurements in pot-grown saplings.
    McCulloh KA; Winter K; Meinzer FC; Garcia M; Aranda J; Lachenbruch B
    Tree Physiol; 2007 Sep; 27(9):1355-60. PubMed ID: 17545135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating conductive sapwood area in diffuse and ring porous trees with electronic resistance tomography.
    Benson AR; Koeser AK; Morgenroth J
    Tree Physiol; 2019 Mar; 39(3):484-494. PubMed ID: 30304488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Canopy stomatal conductance following drought, disturbance, and death in an upland oak/pine forest of the new jersey pine barrens, USA.
    Schäfer KV
    Front Plant Sci; 2011; 2():15. PubMed ID: 22639580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What the towers don't see at night: nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California.
    Fisher JB; Baldocchi DD; Misson L; Dawson TE; Goldstein AH
    Tree Physiol; 2007 Apr; 27(4):597-610. PubMed ID: 17242001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.