These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22662040)

  • 1. On-chip collection of particles and cells by AC electroosmotic pumping and dielectrophoresis using asymmetric microelectrodes.
    Melvin EM; Moore BR; Gilchrist KH; Grego S; Velev OD
    Biomicrofluidics; 2011 Sep; 5(3):34113-3411317. PubMed ID: 22662040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping alternating current electroosmotic flow at the dielectrophoresis crossover frequency of a colloidal probe.
    Wang J; Wei MT; Cohen JA; Ou-Yang HD
    Electrophoresis; 2013 Jul; 34(13):1915-21. PubMed ID: 23616351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient nanoparticle focusing utilizing cascade AC electroosmotic flow.
    Abdelghany A; Yamasaki K; Ichikawa Y; Motosuke M
    Electrophoresis; 2022 Sep; 43(16-17):1755-1764. PubMed ID: 35736538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced penetration of fluoride particles into bovine enamel by combining dielectrophoresis with AC electroosmosis.
    Ivanoff CS; Swami NS; Hottel TL; Garcia-Godoy F
    Electrophoresis; 2013 Nov; 34(20-21):2945-55. PubMed ID: 23897721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis.
    Lin SC; Lu JC; Sung YL; Lin CT; Tung YC
    Lab Chip; 2013 Aug; 13(15):3082-9. PubMed ID: 23753015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AC-dielectrophoretic characterization and separation of submicron and micron particles using sidewall AgPDMS electrodes.
    Lewpiriyawong N; Yang C
    Biomicrofluidics; 2012 Mar; 6(1):12807-128079. PubMed ID: 22662074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical and experimental analysis of negative dielectrophoresis-induced particle trajectories.
    Luna R; Heineck DP; Bucher E; Heiser L; Ibsen SD
    Electrophoresis; 2022 Jun; 43(12):1366-1377. PubMed ID: 35377504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards CMOS Integrated Microfluidics Using Dielectrophoretic Immobilization.
    Matbaechi Ettehad H; Yadav RK; Guha S; Wenger C
    Biosensors (Basel); 2019 Jun; 9(2):. PubMed ID: 31195725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors affecting particle collection by electro-osmosis in microfluidic systems.
    Mohtar MN; Hoettges KF; Hughes MP
    Electrophoresis; 2014 Feb; 35(2-3):345-51. PubMed ID: 24132700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous size-based DEP separation of particles using a bi-gap electrode pair.
    Derakhshan R; Ramiar A; Ghasemi A
    Analyst; 2022 Nov; 147(23):5395-5408. PubMed ID: 36286388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of microparticle separation utilizing electrokinesis within an electrodeless dielectrophoresis chip.
    Chiou CH; Pan JC; Chien LJ; Lin YY; Lin JL
    Sensors (Basel); 2013 Feb; 13(3):2763-76. PubMed ID: 23447009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Study of Particle-Fluid Flow Under AC Electrokinetics in Electrode-Multilayered Microfluidic Device.
    Sato N; Yao J; Sugawara M; Takei M
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):453-463. PubMed ID: 29993454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bi-directional flow induced by an AC electroosmotic micropump with DC voltage bias.
    Islam N; Reyna J
    Electrophoresis; 2012 Apr; 33(7):1191-7. PubMed ID: 22539322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulation of bacteriophages with dielectrophoresis on carbon nanofiber nanoelectrode arrays.
    Madiyar FR; Syed LU; Culbertson CT; Li J
    Electrophoresis; 2013 Apr; 34(7):1123-30. PubMed ID: 23348683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of biological particles using dielectrophoresis and impedance measurement.
    Milner KR; Brown AP; Betts WB; Goodall DM; Allsopp DW
    Biomed Sci Instrum; 1997; 34():157-62. PubMed ID: 9603031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform.
    Martinez-Duarte R; Gorkin RA; Abi-Samra K; Madou MJ
    Lab Chip; 2010 Apr; 10(8):1030-43. PubMed ID: 20358111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A label-free impedimetric DNA sensing chip integrated with AC electroosmotic stirring.
    Wu CC; Yang DJ
    Biosens Bioelectron; 2013 May; 43():348-54. PubMed ID: 23357000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous flow nanoparticle concentration using alternating current-electroosmotic flow.
    Hoettges KF; McDonnell MB; Hughes MP
    Electrophoresis; 2014 Feb; 35(4):467-73. PubMed ID: 24166772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of Janus Particles and Alternating Current Electrokinetic Measurements with a Rapidly Fabricated Indium Tin Oxide Electrode Array.
    Chen YL; Jiang HR
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28671656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Moving pulsed dielectrophoresis.
    Honegger T; Peyrade D
    Lab Chip; 2013 Apr; 13(8):1538-45. PubMed ID: 23429670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.