These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 22663014)
1. Detection of carbon nanotubes in environmental matrices using programmed thermal analysis. Doudrick K; Herckes P; Westerhoff P Environ Sci Technol; 2012 Nov; 46(22):12246-53. PubMed ID: 22663014 [TBL] [Abstract][Full Text] [Related]
2. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes. Hedmer M; Isaxon C; Nilsson PT; Ludvigsson L; Messing ME; Genberg J; Skaug V; Bohgard M; Tinnerberg H; Pagels JH Ann Occup Hyg; 2014 Apr; 58(3):355-79. PubMed ID: 24389082 [TBL] [Abstract][Full Text] [Related]
3. Detection of single walled carbon nanotubes by monitoring embedded metals. Reed RB; Goodwin DG; Marsh KL; Capracotta SS; Higgins CP; Fairbrother DH; Ranville JF Environ Sci Process Impacts; 2013 Jan; 15(1):204-13. PubMed ID: 24592437 [TBL] [Abstract][Full Text] [Related]
4. Real-Time Emission and Exposure Measurements of Multi-walled Carbon Nanotubes during Production, Power Sawing, and Testing of Epoxy-Based Nanocomposites. Hedmer M; Lovén K; Martinsson J; Messing ME; Gudmundsson A; Pagels J Ann Work Expo Health; 2022 Aug; 66(7):878-894. PubMed ID: 35297480 [TBL] [Abstract][Full Text] [Related]
5. Real-Time Measurement of Airborne Carbon Nanotubes in Workplace Atmospheres. Zheng L; Kulkarni P Anal Chem; 2019 Oct; 91(20):12713-12723. PubMed ID: 31502830 [TBL] [Abstract][Full Text] [Related]
6. Carbon Nanotube Emissions from Arc Discharge Production: Classification of Particle Types with Electron Microscopy and Comparison with Direct Reading Techniques. Ludvigsson L; Isaxon C; Nilsson PT; Tinnerberg H; Messing ME; Rissler J; Skaug V; Gudmundsson A; Bohgard M; Hedmer M; Pagels J Ann Occup Hyg; 2016 May; 60(4):493-512. PubMed ID: 26748380 [TBL] [Abstract][Full Text] [Related]
7. Testing the resistance of single- and multi-walled carbon nanotubes to chemothermal oxidation used to isolate soots from environmental samples. Sobek A; Bucheli TD Environ Pollut; 2009 Apr; 157(4):1065-71. PubMed ID: 18952329 [TBL] [Abstract][Full Text] [Related]
8. Use of Raman spectroscopy to identify carbon nanotube contamination at an analytical balance workstation. Braun EI; Huang A; Tusa CA; Yukica MA; Pantano P J Occup Environ Hyg; 2016 Dec; 13(12):915-923. PubMed ID: 27224520 [TBL] [Abstract][Full Text] [Related]
9. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Lam CW; James JT; McCluskey R; Arepalli S; Hunter RL Crit Rev Toxicol; 2006 Mar; 36(3):189-217. PubMed ID: 16686422 [TBL] [Abstract][Full Text] [Related]
10. Extraction and quantification of carbon nanotubes in biological matrices with application to rat lung tissue. Doudrick K; Corson N; Oberdörster G; Elder AC; Herckes P; Halden RU; Westerhoff P ACS Nano; 2013 Oct; 7(10):8849-56. PubMed ID: 23992048 [TBL] [Abstract][Full Text] [Related]
11. Quantification of carbon nanotubes in different environmental matrices by a microwave induced heating method. He Y; Al-Abed SR; Dionysiou DD Sci Total Environ; 2017 Feb; 580():509-517. PubMed ID: 28040213 [TBL] [Abstract][Full Text] [Related]
12. Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers. Dahm MM; Evans DE; Schubauer-Berigan MK; Birch ME; Fernback JE Ann Occup Hyg; 2012 Jul; 56(5):542-56. PubMed ID: 22156567 [TBL] [Abstract][Full Text] [Related]
13. Selective detection and quantification of carbon nanotubes in soil. Jeong J; Lee YJ; Hwang Ys; Hong IS Environ Toxicol Chem; 2015 Sep; 34(9):1969-74. PubMed ID: 25931381 [TBL] [Abstract][Full Text] [Related]
14. Raman characterization of thermal conduction in transparent carbon nanotube films. Kim D; Zhu L; Han CS; Kim JH; Baik S Langmuir; 2011 Dec; 27(23):14532-8. PubMed ID: 22004446 [TBL] [Abstract][Full Text] [Related]
15. Sorption of organophosphate esters by carbon nanotubes. Yan W; Yan L; Duan J; Jing C J Hazard Mater; 2014 May; 273():53-60. PubMed ID: 24721694 [TBL] [Abstract][Full Text] [Related]
16. Aerosol Emission Monitoring and Assessment of Potential Exposure to Multi-walled Carbon Nanotubes in the Manufacture of Polymer Nanocomposites. Thompson D; Chen SC; Wang J; Pui DY Ann Occup Hyg; 2015 Nov; 59(9):1135-51. PubMed ID: 26209597 [TBL] [Abstract][Full Text] [Related]
17. Thermogravimetry-mass spectrometry for carbon nanotube detection in complex mixtures. Plata DL; Reddy CM; Gschwend PM Environ Sci Technol; 2012 Nov; 46(22):12254-61. PubMed ID: 22283840 [TBL] [Abstract][Full Text] [Related]
18. A general strategy for the preparation of carbon nanotubes and graphene oxide decorated with PdO nanoparticles in water. He H; Gao C Molecules; 2010 Jul; 15(7):4679-94. PubMed ID: 20657385 [TBL] [Abstract][Full Text] [Related]
19. Laboratory evaluation of a personal aethalometer for assessing airborne carbon nanotube exposures. O'Shaughnessy P; Stoltenberg A; Holder C; Altmaier R J Occup Environ Hyg; 2020 Jun; 17(6):262-273. PubMed ID: 32286917 [TBL] [Abstract][Full Text] [Related]
20. [Efficient enrichment of pesticides from environmental water samples by cobalt-nickel double metal hydroxide nanocage/multiwalled carbon nanotube composites]. Wang X; Yang J; Zhao J; Zhou Z; DU X; Lu X Se Pu; 2022 Oct; 40(10):910-920. PubMed ID: 36222254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]