These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 22663075)

  • 1. Learning stable, regularised latent models of neural population dynamics.
    Buesing L; Macke JH; Sahani M
    Network; 2012; 23(1-2):24-47. PubMed ID: 22663075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian population decoding of motor cortical activity using a Kalman filter.
    Wu W; Gao Y; Bienenstock E; Donoghue JP; Black MJ
    Neural Comput; 2006 Jan; 18(1):80-118. PubMed ID: 16354382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ascertaining neuron importance by information theoretical analysis in motor Brain-Machine Interfaces.
    Wang Y; Principe JC; Sanchez JC
    Neural Netw; 2009; 22(5-6):781-90. PubMed ID: 19615852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Instantaneous estimation of motor cortical neural encoding for online brain-machine interfaces.
    Wang Y; Principe JC
    J Neural Eng; 2010 Oct; 7(5):056010. PubMed ID: 20841635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential Monte Carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces.
    Wang Y; Paiva AR; Príncipe JC; Sanchez JC
    Neural Comput; 2009 Oct; 21(10):2894-930. PubMed ID: 19548797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ascertaining the importance of neurons to develop better brain-machine interfaces.
    Sanchez JC; Carmena JM; Lebedev MA; Nicolelis MA; Harris JG; Principe JC
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):943-53. PubMed ID: 15188862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved multi-unit decoding at the brain-machine interface using population temporal linear filtering.
    Herzfeld DJ; Beardsley SA
    J Neural Eng; 2010 Aug; 7(4):046012. PubMed ID: 20644245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field-programmable gate array implementation of a probabilistic neural network for motor cortical decoding in rats.
    Zhou F; Liu J; Yu Y; Tian X; Liu H; Hao Y; Zhang S; Chen W; Dai J; Zheng X
    J Neurosci Methods; 2010 Jan; 185(2):299-306. PubMed ID: 19879294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robustness of neuroprosthetic decoding algorithms.
    Serruya M; Hatsopoulos N; Fellows M; Paninski L; Donoghue J
    Biol Cybern; 2003 Mar; 88(3):219-28. PubMed ID: 12647229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A learning rule for very simple universal approximators consisting of a single layer of perceptrons.
    Auer P; Burgsteiner H; Maass W
    Neural Netw; 2008 Jun; 21(5):786-95. PubMed ID: 18249524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and decoding motor cortical activity using a switching Kalman filter.
    Wu W; Black MJ; Mumford D; Gao Y; Bienenstock E; Donoghue JP
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):933-42. PubMed ID: 15188861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of movement-related intracortical activity from micro-electrocorticogram array signals in monkey primary motor cortex.
    Watanabe H; Sato MA; Suzuki T; Nambu A; Nishimura Y; Kawato M; Isa T
    J Neural Eng; 2012 Jun; 9(3):036006. PubMed ID: 22570195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-based neural decoding of reaching movements: a maximum likelihood approach.
    Kemere C; Shenoy KV; Meng TH
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):925-32. PubMed ID: 15188860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical encoding model for a primary motor cortical brain-machine interface.
    Shoham S; Paninski LM; Fellows MR; Hatsopoulos NG; Donoghue JP; Normann RA
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1312-22. PubMed ID: 16041995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpreting spatial and temporal neural activity through a recurrent neural network brain-machine interface.
    Sanchez JC; Erdogmus D; Nicolelis MA; Wessberg J; Principe JC
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):213-9. PubMed ID: 16003902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generating spike trains with specified correlation coefficients.
    Macke JH; Berens P; Ecker AS; Tolias AS; Bethge M
    Neural Comput; 2009 Feb; 21(2):397-423. PubMed ID: 19196233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spiking neural networks for cortical neuronal spike train decoding.
    Fang H; Wang Y; He J
    Neural Comput; 2010 Apr; 22(4):1060-85. PubMed ID: 19922291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection and parameterization of cortical neurons for neuroprosthetic control.
    Wahnoun R; He J; Helms Tillery SI
    J Neural Eng; 2006 Jun; 3(2):162-71. PubMed ID: 16705272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulus-driven changes in sensorimotor behavior and neuronal functional connectivity application to brain-machine interfaces and neurorehabilitation.
    Rebesco JM; Miller LE
    Prog Brain Res; 2011; 192():83-102. PubMed ID: 21763520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A latent discriminative model-based approach for classification of imaginary motor tasks from EEG data.
    Saa JF; Çetin M
    J Neural Eng; 2012 Apr; 9(2):026020. PubMed ID: 22414728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.