These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 22664076)

  • 21. Treatment of microbial biofilms in the post-antibiotic era: prophylactic and therapeutic use of antimicrobial peptides and their design by bioinformatics tools.
    Di Luca M; Maccari G; Nifosì R
    Pathog Dis; 2014 Apr; 70(3):257-70. PubMed ID: 24515391
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antimicrobial peptides: new candidates in the fight against bacterial infections.
    Toke O
    Biopolymers; 2005; 80(6):717-35. PubMed ID: 15880793
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials.
    Ong ZY; Wiradharma N; Yang YY
    Adv Drug Deliv Rev; 2014 Nov; 78():28-45. PubMed ID: 25453271
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antimicrobial peptides: key components of the innate immune system.
    Pasupuleti M; Schmidtchen A; Malmsten M
    Crit Rev Biotechnol; 2012 Jun; 32(2):143-71. PubMed ID: 22074402
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Overview of Databases and Bioinformatics Tools for Plant Antimicrobial Peptides.
    Quintans ILADCR; de Araújo JVA; Rocha LNM; de Andrade AEB; do Rêgo TG; Deyholos MK
    Curr Protein Pept Sci; 2022; 23(1):6-19. PubMed ID: 34951361
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthetic cationic amphiphilic α-helical peptides as antimicrobial agents.
    Wiradharma N; Khoe U; Hauser CA; Seow SV; Zhang S; Yang YY
    Biomaterials; 2011 Mar; 32(8):2204-12. PubMed ID: 21168911
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of in vitro activities and modes of action of synthetic antimicrobial peptides derived from an alpha-helical 'sequence template'.
    Pag U; Oedenkoven M; Sass V; Shai Y; Shamova O; Antcheva N; Tossi A; Sahl HG
    J Antimicrob Chemother; 2008 Feb; 61(2):341-52. PubMed ID: 18174202
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational resources and tools for antimicrobial peptides.
    Liu S; Fan L; Sun J; Lao X; Zheng H
    J Pept Sci; 2017 Jan; 23(1):4-12. PubMed ID: 27966278
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CAMP: a useful resource for research on antimicrobial peptides.
    Thomas S; Karnik S; Barai RS; Jayaraman VK; Idicula-Thomas S
    Nucleic Acids Res; 2010 Jan; 38(Database issue):D774-80. PubMed ID: 19923233
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics.
    Sumi CD; Yang BW; Yeo IC; Hahm YT
    Can J Microbiol; 2015 Feb; 61(2):93-103. PubMed ID: 25629960
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antimicrobial peptides (AMPs) as drug candidates: a patent review (2003-2015).
    Kosikowska P; Lesner A
    Expert Opin Ther Pat; 2016 Jun; 26(6):689-702. PubMed ID: 27063450
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Connecting membrane fluidity and surface charge to pore-forming antimicrobial peptides resistance by an ANN-based predictive model.
    Mehla J; Sood SK
    Appl Microbiol Biotechnol; 2013 May; 97(10):4377-84. PubMed ID: 22836781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance.
    Nuti R; Goud NS; Saraswati AP; Alvala R; Alvala M
    Curr Med Chem; 2017; 24(38):4303-4314. PubMed ID: 28814242
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biotic stress resistance in agriculture through antimicrobial peptides.
    Sarika ; Iquebal MA; Rai A
    Peptides; 2012 Aug; 36(2):322-30. PubMed ID: 22659413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antimicrobial peptides design by evolutionary multiobjective optimization.
    Maccari G; Di Luca M; Nifosí R; Cardarelli F; Signore G; Boccardi C; Bifone A
    PLoS Comput Biol; 2013; 9(9):e1003212. PubMed ID: 24039565
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distinct profiling of antimicrobial peptide families.
    Khamis AM; Essack M; Gao X; Bajic VB
    Bioinformatics; 2015 Mar; 31(6):849-56. PubMed ID: 25388148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antimicrobial peptides in innate immune responses.
    Sørensen OE; Borregaard N; Cole AM
    Contrib Microbiol; 2008; 15():61-77. PubMed ID: 18511856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Current state of a dual behaviour of antimicrobial peptides-Therapeutic agents and promising delivery vectors.
    Piotrowska U; Sobczak M; Oledzka E
    Chem Biol Drug Des; 2017 Dec; 90(6):1079-1093. PubMed ID: 28548370
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extremely abundant antimicrobial peptides existed in the skins of nine kinds of Chinese odorous frogs.
    Yang X; Lee WH; Zhang Y
    J Proteome Res; 2012 Jan; 11(1):306-19. PubMed ID: 22029824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.