These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 22664076)

  • 41. Improving on nature's defenses: optimization & high throughput screening of antimicrobial peptides.
    Raventós D; Taboureau O; Mygind PH; Nielsen JD; Sonksen CP; Kristensen HH
    Comb Chem High Throughput Screen; 2005 May; 8(3):219-33. PubMed ID: 15892624
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Machine Learning Prediction of Antimicrobial Peptides.
    Wang G; Vaisman II; van Hoek ML
    Methods Mol Biol; 2022; 2405():1-37. PubMed ID: 35298806
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Alpha-helical antimicrobial peptides--using a sequence template to guide structure-activity relationship studies.
    Zelezetsky I; Tossi A
    Biochim Biophys Acta; 2006 Sep; 1758(9):1436-49. PubMed ID: 16678118
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prediction of antimicrobial peptides based on sequence alignment and support vector machine-pairwise algorithm utilizing LZ-complexity.
    Ng XY; Rosdi BA; Shahrudin S
    Biomed Res Int; 2015; 2015():212715. PubMed ID: 25802839
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antimicrobial Peptides - Small but Mighty Weapons for Plants to Fight Phytopathogens.
    Das K; Datta K; Karmakar S; Datta SK
    Protein Pept Lett; 2019; 26(10):720-742. PubMed ID: 31215363
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pro-moieties of antimicrobial peptide prodrugs.
    Forde E; Devocelle M
    Molecules; 2015 Jan; 20(1):1210-27. PubMed ID: 25591121
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computer-based analysis, visualization, and interpretation of antimicrobial peptide activities.
    Mikut R
    Methods Mol Biol; 2010; 618():287-99. PubMed ID: 20094871
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improved antimicrobial activity of h-lysozyme (107-115) by rational Ala substitution.
    González R; Albericio F; Cascone O; Iannucci NB
    J Pept Sci; 2010 Aug; 16(8):424-9. PubMed ID: 20582913
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Archetypal tryptophan-rich antimicrobial peptides: properties and applications.
    Shagaghi N; Palombo EA; Clayton AH; Bhave M
    World J Microbiol Biotechnol; 2016 Feb; 32(2):31. PubMed ID: 26748808
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Antimicrobial potency and selectivity of simplified symmetric-end peptides.
    Dong N; Zhu X; Chou S; Shan A; Li W; Jiang J
    Biomaterials; 2014 Sep; 35(27):8028-39. PubMed ID: 24952979
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of antimicrobial activity and mechanisms of low amphipathic peptides with different α-helical propensity.
    Zhu X; Zhang L; Wang J; Ma Z; Xu W; Li J; Shan A
    Acta Biomater; 2015 May; 18():155-67. PubMed ID: 25735802
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Animal Venom Peptides: Potential for New Antimicrobial Agents.
    Primon-Barros M; José Macedo A
    Curr Top Med Chem; 2017; 17(10):1119-1156. PubMed ID: 27697042
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CAMP: Collection of sequences and structures of antimicrobial peptides.
    Waghu FH; Gopi L; Barai RS; Ramteke P; Nizami B; Idicula-Thomas S
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D1154-8. PubMed ID: 24265220
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by antimicrobial peptides (AMPs) and plant essential oils.
    Zouhir A; Jridi T; Nefzi A; Ben Hamida J; Sebei K
    Pharm Biol; 2016 Dec; 54(12):3136-3150. PubMed ID: 27246787
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Antimicrobial activity of an abiotic host defense peptide mimic.
    Tew GN; Clements D; Tang H; Arnt L; Scott RW
    Biochim Biophys Acta; 2006 Sep; 1758(9):1387-92. PubMed ID: 16626628
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thinking on the Construction of Antimicrobial Peptide Databases: Powerful Tools for the Molecular Design and Screening.
    Zhang K; Teng D; Mao R; Yang N; Hao Y; Wang J
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834553
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Use of Peptide Libraries for Identification and Optimization of Novel Antimicrobial Peptides.
    Ashby M; Petkova A; Gani J; Mikut R; Hilpert K
    Curr Top Med Chem; 2017; 17(5):537-553. PubMed ID: 27411326
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sense the moment: A highly sensitive antimicrobial activity predictor based on hydrophobic moment.
    Porto WF; Ferreira KCV; Ribeiro SM; Franco OL
    Biochim Biophys Acta Gen Subj; 2022 Mar; 1866(3):130070. PubMed ID: 34953809
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antimicrobial peptide mimics for improved therapeutic properties.
    Rotem S; Mor A
    Biochim Biophys Acta; 2009 Aug; 1788(8):1582-92. PubMed ID: 19028449
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Little Antimicrobial Peptides with Big Therapeutic Roles.
    Zhang D; He Y; Ye Y; Ma Y; Zhang P; Zhu H; Xu N; Liang S
    Protein Pept Lett; 2019; 26(8):564-578. PubMed ID: 30799781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.