These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 22664124)

  • 21. Hierarchical architecture of sponge spicules: biocatalytic and structure-directing activity of silicatein proteins as model for bioinspired applications.
    Schröder HC; Grebenjuk VA; Wang X; Müller WE
    Bioinspir Biomim; 2016 Jul; 11(4):041002. PubMed ID: 27452043
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Silicateins, the major biosilica forming enzymes present in demosponges: protein analysis and phylogenetic relationship.
    Müller WE; Boreiko A; Wang X; Belikov SI; Wiens M; Grebenjuk VA; Schlossmacher U; Schröder HC
    Gene; 2007 Jun; 395(1-2):62-71. PubMed ID: 17408887
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Giant siliceous spicules from the deep-sea glass sponge Monorhaphis chuni.
    Wang X; Schröder HC; Müller WE
    Int Rev Cell Mol Biol; 2009; 273():69-115. PubMed ID: 19215903
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical mimicry: hierarchical 1D TiO2@ZrO2 core-shell structures reminiscent of sponge spicules by the synergistic effect of silicatein-α and silintaphin-1.
    André R; Tahir MN; Link T; Jochum FD; Kolb U; Theato P; Berger R; Wiens M; Schröder HC; Müller WE; Tremel W
    Langmuir; 2011 May; 27(9):5464-71. PubMed ID: 21456536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Poly(silicate)-metabolizing silicatein in siliceous spicules and silicasomes of demosponges comprises dual enzymatic activities (silica polymerase and silica esterase).
    Müller WE; Schlossmacher U; Wang X; Boreiko A; Brandt D; Wolf SE; Tremel W; Schröder HC
    FEBS J; 2008 Jan; 275(2):362-70. PubMed ID: 18081864
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bio-sintering processes in hexactinellid sponges: fusion of bio-silica in giant basal spicules from Monorhaphis chuni.
    Müller WE; Wang X; Burghard Z; Bill J; Krasko A; Boreiko A; Schlossmacher U; Schröder HC; Wiens M
    J Struct Biol; 2009 Dec; 168(3):548-61. PubMed ID: 19683578
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Apposition of silica lamellae during growth of spicules in the demosponge Suberites domuncula: biological/biochemical studies and chemical/biomimetical confirmation.
    Schröder HC; Natalio F; Shukoor I; Tremel W; Schlossmacher U; Wang X; Müller WE
    J Struct Biol; 2007 Sep; 159(3):325-34. PubMed ID: 17336092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A synthetic biology approach for the fabrication of functional (fluorescent magnetic) bioorganic-inorganic hybrid materials in sponge primmorphs.
    Markl JS; Müller WEG; Sereno D; Elkhooly TA; Kokkinopoulou M; Gardères J; Depoix F; Wiens M
    Biotechnol Bioeng; 2020 Jun; 117(6):1789-1804. PubMed ID: 32068251
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Histochemical and electron microscopic analysis of spiculogenesis in the demosponge Suberites domuncula.
    Eckert C; Schröder HC; Brandt D; Perovic-Ottstadt S; Müller WE
    J Histochem Cytochem; 2006 Sep; 54(9):1031-40. PubMed ID: 16709731
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sponge biosilica formation involves syneresis following polycondensation in vivo.
    Wang X; Schröder HC; Brandt D; Wiens M; Lieberwirth I; Glasser G; Schlossmacher U; Wang S; Müller WE
    Chembiochem; 2011 Oct; 12(15):2316-24. PubMed ID: 21858907
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hierarchical composition of the axial filament from spicules of the siliceous sponge Suberites domuncula: from biosilica-synthesizing nanofibrils to structure- and morphology-guiding triangular stems.
    Müller WE; Mugnaioli E; Schröder HC; Schloßmacher U; Giovine M; Kolb U; Wang X
    Cell Tissue Res; 2013 Jan; 351(1):49-58. PubMed ID: 23135475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biosilica aging: from enzyme-driven gelation via syneresis to chemical/biochemical hardening.
    Wang X; Schröder HC; Schloßmacher U; Jiang L; Korzhev M; Müller WE
    Biochim Biophys Acta; 2013 Jun; 1830(6):3437-46. PubMed ID: 23428570
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioinspired synthesis of multifunctional inorganic and bio-organic hybrid materials.
    Andre R; Tahir MN; Natalio F; Tremel W
    FEBS J; 2012 May; 279(10):1737-49. PubMed ID: 22510103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-assembly and photocatalytic activity of branched silicatein/silintaphin filaments decorated with silicatein-synthesized TiO2 nanoparticles.
    Gardères J; Elkhooly TA; Link T; Markl JS; Müller WE; Renkel J; Korzhev M; Wiens M
    Bioprocess Biosyst Eng; 2016 Sep; 39(9):1477-86. PubMed ID: 27151092
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of a silicatein(-related) protease in the giant spicules of the deep-sea hexactinellid Monorhaphis chuni.
    Müller WE; Boreiko A; Schlossmacher U; Wang X; Eckert C; Kropf K; Li J; Schröder HC
    J Exp Biol; 2008 Feb; 211(Pt 3):300-9. PubMed ID: 18203984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular cloning of silicatein gene from marine sponge Petrosia ficiformis (Porifera, Demospongiae) and development of primmorphs as a model for biosilicification studies.
    Pozzolini M; Sturla L; Cerrano C; Bavestrello G; Camardella L; Parodi AM; Raheli F; Benatti U; Müller WE; Giovine M
    Mar Biotechnol (NY); 2004; 6(6):594-603. PubMed ID: 15747092
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioactive and biodegradable silica biomaterial for bone regeneration.
    Wang S; Wang X; Draenert FG; Albert O; Schröder HC; Mailänder V; Mitov G; Müller WE
    Bone; 2014 Oct; 67():292-304. PubMed ID: 25088401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Silicatein expression in Haliclona indistincta (Phylum Porifera, Order Haplosclerida) at different developmental stages.
    Aguilar-Camacho JM; McCormack GP
    Dev Genes Evol; 2019 Jan; 229(1):35-41. PubMed ID: 30756180
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzyme-based biosilica and biocalcite: biomaterials for the future in regenerative medicine.
    Wang X; Schröder HC; Müller WE
    Trends Biotechnol; 2014 Sep; 32(9):441-7. PubMed ID: 24908383
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Silicatein: nanobiotechnological and biomedical applications.
    Schröder HC; Schlossmacher U; Boreiko A; Natalio F; Baranowska M; Brandt D; Wang X; Tremel W; Wiens M; Müller WE
    Prog Mol Subcell Biol; 2009; 47():251-73. PubMed ID: 19198781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.