These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 22664190)
1. Overexpression of NAD kinases improves the L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Shi F; Huan X; Wang X; Ning J Enzyme Microb Technol; 2012 Jul; 51(2):73-80. PubMed ID: 22664190 [TBL] [Abstract][Full Text] [Related]
2. Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Shi F; Li K; Huan X; Wang X Appl Biochem Biotechnol; 2013 Sep; 171(2):504-21. PubMed ID: 23868449 [TBL] [Abstract][Full Text] [Related]
3. [Overexpression of Corynebacterium glutamicum NAD kinase improves L-isoleucine biosynthesis]. Huan X; Li K; Shi F; Wang X Sheng Wu Gong Cheng Xue Bao; 2012 Sep; 28(9):1038-47. PubMed ID: 23289306 [TBL] [Abstract][Full Text] [Related]
4. Comparative proteome analysis of global effect of POS5 and zwf-ppnK overexpression in L-isoleucine producing Corynebacterium glutamicum ssp. lactofermentum. Shi F; Li K; Li Y Biotechnol Lett; 2015 May; 37(5):1063-71. PubMed ID: 25650341 [TBL] [Abstract][Full Text] [Related]
5. Overexpression of ppc and lysC to improve the production of 4-hydroxyisoleucine and its precursor l-isoleucine in recombinant Corynebacterium glutamicum ssp. lactofermentum. Shi F; Fang H; Niu T; Lu Z Enzyme Microb Technol; 2016 Jun; 87-88():79-85. PubMed ID: 27178798 [TBL] [Abstract][Full Text] [Related]
6. 4-Hydroxyisoleucine production of recombinant Corynebacterium glutamicum ssp. lactofermentum under optimal corn steep liquor limitation. Shi F; Niu T; Fang H Appl Microbiol Biotechnol; 2015 May; 99(9):3851-63. PubMed ID: 25725632 [TBL] [Abstract][Full Text] [Related]
7. Sufficient NADPH supply and pknG deletion improve 4-hydroxyisoleucine production in recombinant Corynebacterium glutamicum. Shi F; Zhang M; Li Y; Fang H Enzyme Microb Technol; 2018 Aug; 115():1-8. PubMed ID: 29859597 [TBL] [Abstract][Full Text] [Related]
8. Enhancement of substrate supply and ido expression to improve 4-hydroxyisoleucine production in recombinant Corynebacterium glutamicum ssp. lactofermentum. Shi F; Zhang S; Li Y; Lu Z Appl Microbiol Biotechnol; 2019 May; 103(10):4113-4124. PubMed ID: 30953121 [TBL] [Abstract][Full Text] [Related]
9. Co-production of S-adenosyl-L-methionine and L-isoleucine in Corynebacterium glutamicum. Han G; Hu X; Wang X Enzyme Microb Technol; 2015 Oct; 78():27-33. PubMed ID: 26215341 [TBL] [Abstract][Full Text] [Related]
10. Characterization of Mycobacterium tuberculosis NAD kinase: functional analysis of the full-length enzyme by site-directed mutagenesis. Raffaelli N; Finaurini L; Mazzola F; Pucci L; Sorci L; Amici A; Magni G Biochemistry; 2004 Jun; 43(23):7610-7. PubMed ID: 15182203 [TBL] [Abstract][Full Text] [Related]
11. Enhancing pentose phosphate pathway in Corynebacterium glutamicum to improve l-isoleucine production. Ma W; Wang J; Li Y; Hu X; Shi F; Wang X Biotechnol Appl Biochem; 2016 Nov; 63(6):877-885. PubMed ID: 27010514 [TBL] [Abstract][Full Text] [Related]
12. Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production. Lindner SN; Niederholtmeyer H; Schmitz K; Schoberth SM; Wendisch VF Appl Microbiol Biotechnol; 2010 Jun; 87(2):583-93. PubMed ID: 20180116 [TBL] [Abstract][Full Text] [Related]
13. Strategy for improving L-isoleucine production efficiency in Corynebacterium glutamicum. Wang X Appl Microbiol Biotechnol; 2019 Mar; 103(5):2101-2111. PubMed ID: 30663007 [TBL] [Abstract][Full Text] [Related]
14. Biochemical and functional characterization of novel NADH kinase in the enteric protozoan parasite Entamoeba histolytica. Jeelani G; Husain A; Sato D; Soga T; Suematsu M; Nozaki T Biochimie; 2013 Feb; 95(2):309-19. PubMed ID: 23069387 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of Corynebacterium glutamicum for improved L-arginine synthesis by enhancing NADPH supply. Zhan M; Kan B; Dong J; Xu G; Han R; Ni Y J Ind Microbiol Biotechnol; 2019 Jan; 46(1):45-54. PubMed ID: 30446890 [TBL] [Abstract][Full Text] [Related]
16. Thymidine production by overexpressing NAD+ kinase in an Escherichia coli recombinant strain. Lee HC; Kim JS; Jang W; Kim SY Biotechnol Lett; 2009 Dec; 31(12):1929-36. PubMed ID: 19774345 [TBL] [Abstract][Full Text] [Related]
17. Expression of glf Z.m. increases D-mannitol formation in whole cell biotransformation with resting cells of Corynebacterium glutamicum. Bäumchen C; Bringer-Meyer S Appl Microbiol Biotechnol; 2007 Sep; 76(3):545-52. PubMed ID: 17503033 [TBL] [Abstract][Full Text] [Related]
18. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway. Xu J; Han M; Zhang J; Guo Y; Zhang W Amino Acids; 2014 Sep; 46(9):2165-75. PubMed ID: 24879631 [TBL] [Abstract][Full Text] [Related]
19. Increasing available NADH supply during succinic acid production by Corynebacterium glutamicum. Zhou Z; Wang C; Chen Y; Zhang K; Xu H; Cai H; Chen Z Biotechnol Prog; 2015; 31(1):12-9. PubMed ID: 25311136 [TBL] [Abstract][Full Text] [Related]
20. Optimization of ribosomal binding site sequences for gene expression and 4-hydroxyisoleucine biosynthesis in recombinant corynebacterium glutamicum. Shi F; Fan Z; Zhang S; Wang Y; Tan S; Li Y Enzyme Microb Technol; 2020 Oct; 140():109622. PubMed ID: 32912682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]