These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
506 related articles for article (PubMed ID: 22664203)
1. Update on control of Staphylococcus aureus and Streptococcus agalactiae for management of mastitis. Keefe G Vet Clin North Am Food Anim Pract; 2012 Jul; 28(2):203-16. PubMed ID: 22664203 [TBL] [Abstract][Full Text] [Related]
2. Prevalence of contagious pathogens of bovine mastitis and use of mastitis control practices. Sischo WM; Heider LE; Miller GY; Moore DA J Am Vet Med Assoc; 1993 Feb; 202(4):595-600. PubMed ID: 8449798 [TBL] [Abstract][Full Text] [Related]
3. Association between management practices, dairy herd characteristics, and somatic cell count of bulk tank milk. Wilson DJ; Das HH; Gonzalez RN; Sears PM J Am Vet Med Assoc; 1997 May; 210(10):1499-502. PubMed ID: 9154205 [TBL] [Abstract][Full Text] [Related]
4. Herd management and prevalence of mastitis in dairy herds with high and low somatic cell counts. Erskine RJ; Eberhart RJ; Hutchinson LJ; Spencer SB J Am Vet Med Assoc; 1987 Jun; 190(11):1411-6. PubMed ID: 3301762 [TBL] [Abstract][Full Text] [Related]
5. Management practices associated with the bulk-milk prevalence of Staphylococcus aureus in Canadian dairy farms. Olde Riekerink RG; Barkema HW; Scholl DT; Poole DE; Kelton DF Prev Vet Med; 2010 Oct; 97(1):20-8. PubMed ID: 20696486 [TBL] [Abstract][Full Text] [Related]
6. Association between teat skin colonization and intramammary infection with Staphylococcus aureus and Streptococcus agalactiae in herds with automatic milking systems. Svennesen L; Nielsen SS; Mahmmod YS; Krömker V; Pedersen K; Klaas IC J Dairy Sci; 2019 Jan; 102(1):629-639. PubMed ID: 30415854 [TBL] [Abstract][Full Text] [Related]
7. Prevalence of mastitis pathogens in Ragusa, Sicily, from 2000 to 2006. Ferguson JD; Azzaro G; Gambina M; Licitra G J Dairy Sci; 2007 Dec; 90(12):5798-813. PubMed ID: 18024774 [TBL] [Abstract][Full Text] [Related]
8. Management practices associated with presence of Staphylococcus aureus in bulk tank milk from Ohio dairy herds. da Costa LB; Rajala-Schultz PJ; Schuenemann GM J Dairy Sci; 2016 Feb; 99(2):1364-1373. PubMed ID: 26686713 [TBL] [Abstract][Full Text] [Related]
9. Cost-effectiveness of diagnostic strategies using quantitative real-time PCR and bacterial culture to identify contagious mastitis cases in large dairy herds. Murai K; Lehenbauer TW; Champagne JD; Glenn K; Aly SS Prev Vet Med; 2014 Mar; 113(4):522-35. PubMed ID: 24485275 [TBL] [Abstract][Full Text] [Related]
10. [The dairying veterinary approach to a high bulk milk cell count caused by Streptococcus agalactiae]. Loeffler SH; Lam TJ; Barkema HW; Scholten D; Hessels AL; van Gestel AM Tijdschr Diergeneeskd; 1995 Aug; 120(16):458-63. PubMed ID: 7570543 [TBL] [Abstract][Full Text] [Related]
11. Short communication: comparing real-time PCR and bacteriological cultures for Streptococcus agalactiae and Staphylococcus aureus in bulk-tank milk samples. Zanardi G; Caminiti A; Delle Donne G; Moroni P; Santi A; Galletti G; Tamba M; Bolzoni G; Bertocchi L J Dairy Sci; 2014 Sep; 97(9):5592-8. PubMed ID: 24997661 [TBL] [Abstract][Full Text] [Related]
13. Accuracy of qPCR and bacterial culture for the diagnosis of bovine intramammary infections and teat skin colonisation with Streptococcus agalactiae and Staphylococcus aureus using Bayesian analysis. Svennesen L; Mahmmod YS; Skjølstrup NK; Mathiasen LR; Katholm J; Pedersen K; Klaas IC; Nielsen SS Prev Vet Med; 2018 Dec; 161():69-74. PubMed ID: 30466660 [TBL] [Abstract][Full Text] [Related]
14. Herd- and cow-level risk factors associated with subclinical mastitis in dairy farms from the High Plains of the northern Antioquia, Colombia. Ramírez NF; Keefe G; Dohoo I; Sánchez J; Arroyave O; Cerón J; Jaramillo M; Palacio LG J Dairy Sci; 2014 Jul; 97(7):4141-50. PubMed ID: 24792788 [TBL] [Abstract][Full Text] [Related]
15. Retrospective cohort study of management procedures associated with dairy herd-level eradication of Streptococcus agalactiae in the Danish surveillance program. Skarbye AP; Krogh MA; Østergaard SR J Dairy Sci; 2021 May; 104(5):5988-5997. PubMed ID: 33612214 [TBL] [Abstract][Full Text] [Related]
16. Spatiotemporal patterns, annual baseline and movement-related incidence of Streptococcus agalactiae infection in Danish dairy herds: 2000-2009. Mweu MM; Nielsen SS; Halasa T; Toft N Prev Vet Med; 2014 Feb; 113(2):219-30. PubMed ID: 24269038 [TBL] [Abstract][Full Text] [Related]
17. Economic and epidemiological impact of different intervention strategies for subclinical and clinical mastitis. Gussmann M; Steeneveld W; Kirkeby C; Hogeveen H; Farre M; Halasa T Prev Vet Med; 2019 May; 166():78-85. PubMed ID: 30935508 [TBL] [Abstract][Full Text] [Related]
18. Incidence and types of clinical mastitis in dairy herds with high and low somatic cell counts. Erskine RJ; Eberhart RJ; Hutchinson LJ; Spencer SB; Campbell MA J Am Vet Med Assoc; 1988 Mar; 192(6):761-5. PubMed ID: 3281923 [TBL] [Abstract][Full Text] [Related]
19. Trends in udder health and emerging mastitogenic pathogens in South African dairy herds. Petzer IM; Karzis J; Watermeyer JC; van der Schans TJ; van Reenen R J S Afr Vet Assoc; 2009 Mar; 80(1):17-22. PubMed ID: 19653514 [TBL] [Abstract][Full Text] [Related]
20. Management strategies to decrease the prevalence of mastitis caused by one strain of Staphylococcus aureus in a dairy herd. Middleton JR; Fox LK; Smith TH J Am Vet Med Assoc; 2001 May; 218(10):1615-8, 1581-2. PubMed ID: 11393376 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]